926 resultados para Mixed binary nonlinear programming
Resumo:
建立了极大极小任务分配问题的混合整数线性规划模型,提出一种矩阵作业解答,并与穷举解及混合整数线性规划解的计算复杂度进行了比较.理论分析和数值试验表明矩阵作业法对两类任务分配问题,极大极小和总体极小任务分配问题,有效地提供最优解.
Resumo:
研究多车辆多目标追逐的路径规划问题。提出两个基于混合整数线性规划(Mixed integer linear programming,MILP)的多目标追逐(Multi-target pursuit,MTP)模型:就近追逐和"一对一"使能追逐。在两个MIP追逐模型中,小车运动的状态方程考虑为具有线性阻尼的质点动力学方程。采用整数变量描述小车与障碍物的相对位置信息,提出"目标膨胀尺寸"的概念来描述对目标的追逐,定义小车的"追逐方向"。采用选取整变量的等高面法求解MILP追逐问题,并给出初始内点整变量的确定方法。最后给出仿真试验1对两个多目标追逐模型进行对比研究,仿真试验2证实了算法的效率。
Resumo:
Resumo:
本文提出了基于机械臂关节驱动力矩约束方程规划其关节最优运动轨迹的一种有效方法.该方法运用矩阵范数理论简化机械臂的动力学约束方程;在机械臂的关节空间内采用归一化的无因次量运用非线性规划法优化其运动轨迹.将所规划的无因次量轨迹方程作为机械臂产生实际运动轨迹的发生器,通过给定机械臂各运动段的起始和终止关节坐标,由系统的动力学约束方程计算出整个运动段所允许的最短运行时间,即生成所期望的运动轨迹.本文的轨迹规划方法计算效率高,可用于在线轨迹规划,文中通过算例证实了该方法的实用性.
Resumo:
Call control features (e.g., call-divert, voice-mail) are primitive options to which users can subscribe off-line to personalise their service. The configuration of a feature subscription involves choosing and sequencing features from a catalogue and is subject to constraints that prevent undesirable feature interactions at run-time. When the subscription requested by a user is inconsistent, one problem is to find an optimal relaxation, which is a generalisation of the feedback vertex set problem on directed graphs, and thus it is an NP-hard task. We present several constraint programming formulations of the problem. We also present formulations using partial weighted maximum Boolean satisfiability and mixed integer linear programming. We study all these formulations by experimentally comparing them on a variety of randomly generated instances of the feature subscription problem.
Resumo:
In this paper, we propose a novel finite impulse response (FIR) filter design methodology that reduces the number of operations with a motivation to reduce power consumption and enhance performance. The novelty of our approach lies in the generation of filter coefficients such that they conform to a given low-power architecture, while meeting the given filter specifications. The proposed algorithm is formulated as a mixed integer linear programming problem that minimizes chebychev error and synthesizes coefficients which consist of pre-specified alphabets. The new modified coefficients can be used for low-power VLSI implementation of vector scaling operations such as FIR filtering using computation sharing multiplier (CSHM). Simulations in 0.25um technology show that CSHM FIR filter architecture can result in 55% power and 34% speed improvement compared to carry save multiplier (CSAM) based filters.
Resumo:
The development of appropriate Electric Vehicle (EV) charging strategies has been identified as an effective way to accommodate an increasing number of EVs on Low Voltage (LV) distribution networks. Most research studies to date assume that future charging facilities will be capable of regulating charge rates continuously, while very few papers consider the more realistic situation of EV chargers that support only on-off charging functionality. In this work, a distributed charging algorithm applicable to on-off based charging systems is presented. Then, a modified version of the algorithm is proposed to incorporate real power system constraints. Both algorithms are compared with uncontrolled and centralized charging strategies from the perspective of both utilities and customers. © 2013 IEEE.
Resumo:
This work presents novel algorithms for learning Bayesian networks of bounded treewidth. Both exact and approximate methods are developed. The exact method combines mixed integer linear programming formulations for structure learning and treewidth computation. The approximate method consists in sampling k-trees (maximal graphs of treewidth k), and subsequently selecting, exactly or approximately, the best structure whose moral graph is a subgraph of that k-tree. The approaches are empirically compared to each other and to state-of-the-art methods on a collection of public data sets with up to 100 variables.
Resumo:
Kuznetsov independence of variables X and Y means that, for any pair of bounded functions f(X) and g(Y), E[f(X)g(Y)]=E[f(X)] *times* E[g(Y)], where E[.] denotes interval-valued expectation and *times* denotes interval multiplication. We present properties of Kuznetsov independence for several variables, and connect it with other concepts of independence in the literature; in particular we show that strong extensions are always included in sets of probability distributions whose lower and upper expectations satisfy Kuznetsov independence. We introduce an algorithm that computes lower expectations subject to judgments of Kuznetsov independence by mixing column generation techniques with nonlinear programming. Finally, we define a concept of conditional Kuznetsov independence, and study its graphoid properties.
Resumo:
In recent years, power systems have experienced many changes in their paradigm. The introduction of new players in the management of distributed generation leads to the decentralization of control and decision-making, so that each player is able to play in the market environment. In the new context, it will be very relevant that aggregator players allow midsize, small and micro players to act in a competitive environment. In order to achieve their objectives, virtual power players and single players are required to optimize their energy resource management process. To achieve this, it is essential to have financial resources capable of providing access to appropriate decision support tools. As small players have difficulties in having access to such tools, it is necessary that these players can benefit from alternative methodologies to support their decisions. This paper presents a methodology, based on Artificial Neural Networks (ANN), and intended to support smaller players. In this case the present methodology uses a training set that is created using energy resource scheduling solutions obtained using a mixed-integer linear programming (MIP) approach as the reference optimization methodology. The trained network is used to obtain locational marginal prices in a distribution network. The main goal of the paper is to verify the accuracy of the ANN based approach. Moreover, the use of a single ANN is compared with the use of two or more ANN to forecast the locational marginal price.
Resumo:
This paper proposes a computationally efficient methodology for the optimal location and sizing of static and switched shunt capacitors in large distribution systems. The problem is formulated as the maximization of the savings produced by the reduction in energy losses and the avoided costs due to investment deferral in the expansion of the network. The proposed method selects the nodes to be compensated, as well as the optimal capacitor ratings and their operational characteristics, i.e. fixed or switched. After an appropriate linearization, the optimization problem was formulated as a large-scale mixed-integer linear problem, suitable for being solved by means of a widespread commercial package. Results of the proposed optimizing method are compared with another recent methodology reported in the literature using two test cases: a 15-bus and a 33-bus distribution network. For the both cases tested, the proposed methodology delivers better solutions indicated by higher loss savings, which are achieved with lower amounts of capacitive compensation. The proposed method has also been applied for compensating to an actual large distribution network served by AES-Venezuela in the metropolitan area of Caracas. A convergence time of about 4 seconds after 22298 iterations demonstrates the ability of the proposed methodology for efficiently handling large-scale compensation problems.
Resumo:
The management of energy resources for islanded operation is of crucial importance for the successful use of renewable energy sources. A Virtual Power Producer (VPP) can optimally operate the resources taking into account the maintenance, operation and load control considering all the involved cost. This paper presents the methodology approach to formulate and solve the problem of determining the optimal resource allocation applied to a real case study in Budapest Tech’s. The problem is formulated as a mixed-integer linear programming model (MILP) and solved by a deterministic optimization technique CPLEX-based implemented in General Algebraic Modeling Systems (GAMS). The problem has also been solved by Evolutionary Particle Swarm Optimization (EPSO). The obtained results are presented and compared.
Resumo:
In the energy management of a small power system, the scheduling of the generation units is a crucial problem for which adequate methodologies can maximize the performance of the energy supply. This paper proposes an innovative methodology for distributed energy resources management. The optimal operation of distributed generation, demand response and storage resources is formulated as a mixed-integer linear programming model (MILP) and solved by a deterministic optimization technique CPLEX-based implemented in General Algebraic Modeling Systems (GAMS). The paper deals with a vision for the grids of the future, focusing on conceptual and operational aspects of electrical grids characterized by an intensive penetration of DG, in the scope of competitive environments and using artificial intelligence methodologies to attain the envisaged goals. These concepts are implemented in a computational framework which includes both grid and market simulation.
Resumo:
The main goal of this work is to solve mathematical program with complementarity constraints (MPCC) using nonlinear programming techniques (NLP). An hyperbolic penalty function is used to solve MPCC problems by including the complementarity constraints in the penalty term. This penalty function [1] is twice continuously differentiable and combines features of both exterior and interior penalty methods. A set of AMPL problems from MacMPEC [2] are tested and a comparative study is performed.
Resumo:
Mathematical Program with Complementarity Constraints (MPCC) finds applica- tion in many fields. As the complementarity constraints fail the standard Linear In- dependence Constraint Qualification (LICQ) or the Mangasarian-Fromovitz constraint qualification (MFCQ), at any feasible point, the nonlinear programming theory may not be directly applied to MPCC. However, the MPCC can be reformulated as NLP problem and solved by nonlinear programming techniques. One of them, the Inexact Restoration (IR) approach, performs two independent phases in each iteration - the feasibility and the optimality phases. This work presents two versions of an IR algorithm to solve MPCC. In the feasibility phase two strategies were implemented, depending on the constraints features. One gives more importance to the complementarity constraints, while the other considers the priority of equality and inequality constraints neglecting the complementarity ones. The optimality phase uses the same approach for both algorithm versions. The algorithms were implemented in MATLAB and the test problems are from MACMPEC collection.