487 resultados para Minsup duality
Resumo:
We examine relative entropy in the context of the higher spin/CFT duality. We consider 3D bulk configurations in higher spin gravity which are dual to the vacuum and a high temperature state of a CFT with W-algebra symmetries in the presence of a chemical potential for a higher spin current. The relative entropy between these states is then evaluated using the Wilson line functional for holographic entanglement entropy. In the limit of small entangling intervals, the relative entropy should vanish for a generic quantum system. We confirm this behavior by showing that the difference in the expectation values of the modular Hamiltonian between the states matches with the difference in the entanglement entropy in the short-distance regime. Additionally, we compute the relative entropy of states corresponding to smooth solutions in the SL(2, Z) family with respect to the vacuum.
Resumo:
In the present paper, based on the principles of gauge/gravity duality we analytically compute the shear viscosity to entropy (eta/s) ratio corresponding to the super fluid phase in Einstein Gauss-Bonnet gravity. From our analysis we note that the ratio indeed receives a finite temperature correction below certain critical temperature (T < T-c). This proves the non universality of eta/s ratio in higher derivative theories of gravity. We also compute the upper bound for the Gauss-Bonnet coupling (lambda) corresponding to the symmetry broken phase and note that the upper bound on the coupling does not seem to change as long as we are close to the critical point of the phase diagram. However the corresponding lower bound of the eta/s ratio seems to get modified due to the finite temperature effects.
Resumo:
In this paper, using the Gauge/gravity duality techniques, we explore the hydrodynamic regime of a very special class of strongly coupled QFTs that come up with an emerging UV length scale in the presence of a negative hyperscaling violating exponent. The dual gravitational counterpart for these QFTs consists of scalar dressed black brane solutions of exactly integrable Einstein-scalar gravity model with Domain Wall (DW) asymptotics. In the first part of our analysis we compute the R-charge diffusion for the boundary theory and find that (unlike the case for the pure AdS (4) black branes) it scales quite non trivially with the temperature. In the second part of our analysis, we compute the eta/s ratio both in the non extremal as well as in the extremal limit of these special class of gauge theories and it turns out to be equal to 1/4 pi in both the cases. These results therefore suggest that the quantum critical systems in the presence of (negative) hyperscaling violation at UV, might fall under a separate universality class as compared to those conventional quantum critical systems with the usual AdS (4) duals.
Resumo:
In this paper, based on the principles of gauge/gravity duality and considering the so called hydrodynamic limit we compute various charge transport properties for a class of strongly coupled non-relativistic CFTs corresponding to z=2 fixed point whose dual gravitational counter part could be realized as the consistent truncation of certain non-relativistic Dp branes in the non-extremal limit. From our analysis we note that unlike the case for the AdS black branes, the charge diffusion constant in the non-relativistic background scales differently with the temperature. This shows a possible violation of the universal bound on the charge conductivity to susceptibility ratio in the context of non-relativistic holography. (C) 2015 The Author. Published by Elsevier B.V.
Resumo:
We present an analysis of the rate of sign changes in the discrete Fourier spectrum of a sequence. The sign changes of either the real or imaginary parts of the spectrum are considered, and the rate of sign changes is termed as the spectral zero-crossing rate (SZCR). We show that SZCR carries information pertaining to the locations of transients within the temporal observation window. We show duality with temporal zero-crossing rate analysis by expressing the spectrum of a signal as a sum of sinusoids with random phases. This extension leads to spectral-domain iterative filtering approaches to stabilize the spectral zero-crossing rate and to improve upon the location estimates. The localization properties are compared with group-delay-based localization metrics in a stylized signal setting well-known in speech processing literature. We show applications to epoch estimation in voiced speech signals using the SZCR on the integrated linear prediction residue. The performance of the SZCR-based epoch localization technique is competitive with the state-of-the-art epoch estimation techniques that are based on average pitch period.
Resumo:
In this paper we consider the issue of the Froissart bound on the high energy behaviour of total cross sections. This bound, originally derived using principles of analyticity of scattering amplitudes, is seen to be satisfied by all the available experimental data on total hadronic cross sections. At strong coupling, gauge/gravity duality has been used to provide some insights into this behaviour. In this work, we find the subleading terms to the so-derived Froissart bound from AdS/CFT. We find that a (ln s/s0) term is obtained, with a negative coefficient. We see that the fits to the currently available data confirm improvement in the fits due to the inclusion of such a term, with the appropriate sign. (C) 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license.
Resumo:
We consider the nonabelian sandpile model defined on directed trees by Ayyer et al. (2015 Commun. Math. Phys. 335 1065). and restrict it to the special case of a one-dimensional lattice of n sites which has open boundaries and disordered hopping rates. We focus on the joint distribution of the integrated currents across each bond simultaneously, and calculate its cumulant generating function exactly. Surprisingly, the process conditioned on seeing specified currents across each bond turns out to be a renormalised version of the same process. We also remark on a duality property of the large deviation function. Lastly, all eigenvalues and both Perron eigenvectors of the tilted generator are determined.
Relación entre la globalización y la internacionalización financiera: el caso de las empresas vascas
Resumo:
[ES] Cada vez es mayor el número de empresas que optan por acudir a mercados financieros exteriores, tanto al objeto de obtener financiación en mejores condiciones, como para realizar inversiones más atractivas que las disponibles dentro de las fronteras nacionales. La decisión de internacionalizar el área financiera de la empresa puede ser el resultado de una estrategia específica orientada al aprovechamiento de las oportunidades que ofrece el proceso de globalización financiera, que se está desarrollando de forma vertiginosa los últimos años.
Resumo:
Changes in the organizational environment over the last three decades have increasingly led to traditional theories being called into question, by stimulating the search for new models suited to the new realities of business economics, generating a crisis or scientific revolution that may result in the appearance of a new paradigm. The positivism-phenomenology duality provokes an “epistemological crisis” in research in management sciences. But the existence of both approaches does not imply the election of one scientific orientation in frontal opposition to the other. From these two conceptions of research procedure, the methods applied can be classed into groups, quantitative and qualitative. The quantitative methodologies places great confidence in the ability of data and measurement to represent opinions or concepts, while qualitative methodologies focus on words and relations to describe a reality or situation. While the diversity of methods contribute to its development and indicates the maturity of an area, the methods must be suitably implemented to obtain significant, valid results. The methodology to be used is not going to depend solely on the type of study or the reality under examination, but also on the stage the research process has reached.
Resumo:
Since the discovery of D-branes as non-perturbative, dynamic objects in string theory, various configurations of branes in type IIA/B string theory and M-theory have been considered to study their low-energy dynamics described by supersymmetric quantum field theories.
One example of such a construction is based on the description of Seiberg-Witten curves of four-dimensional N = 2 supersymmetric gauge theories as branes in type IIA string theory and M-theory. This enables us to study the gauge theories in strongly-coupled regimes. Spectral networks are another tool for utilizing branes to study non-perturbative regimes of two- and four-dimensional supersymmetric theories. Using spectral networks of a Seiberg-Witten theory we can find its BPS spectrum, which is protected from quantum corrections by supersymmetry, and also the BPS spectrum of a related two-dimensional N = (2,2) theory whose (twisted) superpotential is determined by the Seiberg-Witten curve. When we don’t know the perturbative description of such a theory, its spectrum obtained via spectral networks is a useful piece of information. In this thesis we illustrate these ideas with examples of the use of Seiberg-Witten curves and spectral networks to understand various two- and four-dimensional supersymmetric theories.
First, we examine how the geometry of a Seiberg-Witten curve serves as a useful tool for identifying various limits of the parameters of the Seiberg-Witten theory, including Argyres-Seiberg duality and Argyres-Douglas fixed points. Next, we consider the low-energy limit of a two-dimensional N = (2, 2) supersymmetric theory from an M-theory brane configuration whose (twisted) superpotential is determined by the geometry of the branes. We show that, when the two-dimensional theory flows to its infra-red fixed point, particular cases realize Kazama-Suzuki coset models. We also study the BPS spectrum of an Argyres-Douglas type superconformal field theory on the Coulomb branch by using its spectral networks. We provide strong evidence of the equivalence of superconformal field theories from different string-theoretic constructions by comparing their BPS spectra.
Resumo:
This thesis introduces new tools for geometric discretization in computer graphics and computational physics. Our work builds upon the duality between weighted triangulations and power diagrams to provide concise, yet expressive discretization of manifolds and differential operators. Our exposition begins with a review of the construction of power diagrams, followed by novel optimization procedures to fully control the local volume and spatial distribution of power cells. Based on this power diagram framework, we develop a new family of discrete differential operators, an effective stippling algorithm, as well as a new fluid solver for Lagrangian particles. We then turn our attention to applications in geometry processing. We show that orthogonal primal-dual meshes augment the notion of local metric in non-flat discrete surfaces. In particular, we introduce a reduced set of coordinates for the construction of orthogonal primal-dual structures of arbitrary topology, and provide alternative metric characterizations through convex optimizations. We finally leverage these novel theoretical contributions to generate well-centered primal-dual meshes, sphere packing on surfaces, and self-supporting triangulations.
Resumo:
670 p. Capítulos de introducción, metodología, discusión y conclusiones en castellano e inglés.
Resumo:
Current technological advances in fabrication methods have provided pathways to creating architected structural meta-materials similar to those found in natural organisms that are structurally robust and lightweight, such as diatoms. Structural meta-materials are materials with mechanical properties that are determined by material properties at various length scales, which range from the material microstructure (nm) to the macro-scale architecture (μm – mm). It is now possible to exploit material size effect, which emerge at the nanometer length scale, as well as structural effects to tune the material properties and failure mechanisms of small-scale cellular solids, such as nanolattices. This work demonstrates the fabrication and mechanical properties of 3-dimensional hollow nanolattices in both tension and compression. Hollow gold nanolattices loaded in uniaxial compression demonstrate that strength and stiffness vary as a function of geometry and tube wall thickness. Structural effects were explored by increasing the unit cell angle from 30° to 60° while keeping all other parameters constant; material size effects were probed by varying the tube wall thickness, t, from 200nm to 635nm, at a constant relative density and grain size. In-situ uniaxial compression experiments reveal an order-of-magnitude increase in yield stress and modulus in nanolattices with greater lattice angles, and a 150% increase in the yield strength without a concomitant change in modulus in thicker-walled nanolattices for fixed lattice angles. These results imply that independent control of structural and material size effects enables tunability of mechanical properties of 3-dimensional architected meta-materials and highlight the importance of material, geometric, and microstructural effects in small-scale mechanics. This work also explores the flaw tolerance of 3D hollow-tube alumina kagome nanolattices with and without pre-fabricated notches, both in experiment and simulation. Experiments demonstrate that the hollow kagome nanolattices in uniaxial tension always fail at the same load when the ratio of notch length (a) to sample width (w) is no greater than 1/3, with no correlation between failure occurring at or away from the notch. For notches with (a/w) > 1/3, the samples fail at lower peak loads and this is attributed to the increased compliance as fewer unit cells span the un-notched region. Finite element simulations of the kagome tension samples show that the failure is governed by tensile loading for (a/w) < 1/3 but as (a/w) increases, bending begins to play a significant role in the failure. This work explores the flaw sensitivity of hollow alumina kagome nanolattices in tension, using experiments and simulations, and demonstrates that the discrete-continuum duality of architected structural meta-materials gives rise to their flaw insensitivity even when made entirely of intrinsically brittle materials.
Resumo:
This dissertation reformulates and streamlines the core tools of robustness analysis for linear time invariant systems using now-standard methods in convex optimization. In particular, robust performance analysis can be formulated as a primal convex optimization in the form of a semidefinite program using a semidefinite representation of a set of Gramians. The same approach with semidefinite programming duality is applied to develop a linear matrix inequality test for well-connectedness analysis, and many existing results such as the Kalman-Yakubovich--Popov lemma and various scaled small gain tests are derived in an elegant fashion. More importantly, unlike the classical approach, a decision variable in this novel optimization framework contains all inner products of signals in a system, and an algorithm for constructing an input and state pair of a system corresponding to the optimal solution of robustness optimization is presented based on this information. This insight may open up new research directions, and as one such example, this dissertation proposes a semidefinite programming relaxation of a cardinality constrained variant of the H ∞ norm, which we term sparse H ∞ analysis, where an adversarial disturbance can use only a limited number of channels. Finally, sparse H ∞ analysis is applied to the linearized swing dynamics in order to detect potential vulnerable spots in power networks.
Resumo:
Neste trabalho abordamos a teoria de Ginzburg-Landau da supercondutividade (teoria GL). Apresentamos suas origens, características e resultados mais importantes. A idéia fundamental desta teoria e descrever a transição de fase que sofrem alguns metais de uma fase normal para uma fase supercondutora. Durante uma transição de fase em supercondutores do tipo II é característico o surgimento de linhas de fluxo magnético em determinadas regiões de tamanho finito chamadas comumente de vórtices. A dinâmica destas estruturas topológicas é de grande interesse na comunidade científica atual e impulsiona incontáveis núcleos de pesquisa na área da supercondutividade. Baseado nisto estudamos como essas estruturas topológicas influenciam em uma transição de fase em um modelo bidimensional conhecido como modelo XY. No modelo XY vemos que os principais responsáveis pela transição de fase são os vórtices (na verdade pares de vórtice-antivórtice). Villain, observando este fato, percebeu que poderia tornar explícita a contribuição desses defeitos topológicos na função de partição do modelo XY realizando uma transformação de dualidade. Este modelo serve como inspiração para a proposta deste trabalho. Apresentamos aqui um modelo baseado em considerações físicas sobre sistemas de matéria condensada e ao mesmo tempo utilizamos um formalismo desenvolvido recentemente na referência [29] que possibilita tornar explícita a contribuição dos defeitos topológicos na ação original proposta em nossa teoria. Após isso analisamos alguns limites clássicos e finalmente realizamos as flutuações quânticas visando obter a expressão completa da função correlação dos vórtices o que pode ser muito útil em teorias de vórtices interagentes (dinâmica de vórtices).