994 resultados para Milking fraction
Resumo:
Scope: Cocoa, especially the water-insoluble cocoa fraction (WICF), is a rich source of polyphenols. In this study, sequential in vitro digestion of the WICF with gastrointestinal enzymes as well as its bacterial fermentation in a human colonic model system were carried out to investigate bioaccessibility and biotransformation of WICF polyphenols, respectively. Methods and results: The yield of each enzymatic digestion step and the total antioxidant capacity (TAC) were measured and solubilized phenols were characterized by MS/MS. Fermentation of WICF and the effect on the gut microbiota, SCFA production and metabolism of polyphenols was analyzed. In vitro digestion solubilized 38.6% of WICF with pronase and Viscozyme L treatments releasing 51% of the total phenols from the insoluble material. This release of phenols does not determine a reduction in the total antioxidant capacity of the digestion-resistant material. In the colonic model WICF significantly increased of bifidobacteria and lactobacilli as well as butyrate production. Flavanols were converted into phenolic acids by the microbiota following a concentration gradient resulting in high concentrations of 3-hydroxyphenylpropionic acid (3-HPP) in the last gut compartment. Conclusion: Data showed that WICF may exert antioxidant action through the gastrointestinal tract despite its polyphenols being still bound to macromolecules and having prebiotic activity.
Resumo:
The intake fraction (iF) of nonreactive constituents of exhaust from mobile vehicles in the urban area of HongKong is investigated using available monitoring data for carbon monoxide (CO) as a tracer of opportunity. Correcting for regional transport of carbon monoxide into HongKong, the annual-average iF for nonreactive motor vehicle emissions within the city is estimated to be around 270 per million. This estimated iF is much higher than values previously reported for vehicle emissions in US urban areas, Helsinki and Beijing, and somewhat lower than those reported for a densely populated street canyon in downtown Manhattan, New York City, or for emissions into indoor environments. The reported differences in intakefractions in various cities mainly result from the differences in local population densities. Our analysis highlights the importance of accounting for the influence of upwind transport of pollutants when using ambient data to estimate iF for an urban area. For vehicleexhaust in HongKong, it is found that the in/near vehicle microenvironment contributes similarly to the indoor home environment when accounting for the overall iF for children and adults. Keywords Intakefraction; Vehicle emission; Regional pollutant transport; Carbon monoxide; Exposure
Resumo:
Given the background of serious urban pollution in Hong Kong, the intake fraction (iF) of carbon monoxide due to mobile vehicles in urban area of Hong Kong is investigated and estimated to be 600 per million, much higher than those in US urban areas, Helsinki and even Beijing, indicating the high exposure level to urban pollutants in Hong Kong. The dependence of iF to the metrological factors is also discussed. Easterly and northerly winds contribute most to the total iF value. A new method of predicting ventilation rate for a city based on iF concept is proposed. City ventilation rates for different cities are calculated and compared. It is found that Hong Kong has to face the fact that it has the lowest ventilation rate and ACH.
Resumo:
Expressions for finite sums involving the binomial coefficients with unit fraction coefficients whose denominators form an arithmetic sequence are determined.
Resumo:
In this study, we examine seasonal and geographical variability of marine aerosol fine-mode fraction ( fm) and its impacts on deriving the anthropogenic component of aerosol optical depth (ta) and direct radiative forcing from multispectral satellite measurements. A proxy of fm, empirically derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5 data, shows large seasonal and geographical variations that are consistent with the Goddard Chemistry Aerosol Radiation Transport (GOCART) and Global Modeling Initiative (GMI) model simulations. The so-derived seasonally and spatially varying fm is then implemented into a method of estimating ta and direct radiative forcing from the MODIS measurements. It is found that the use of a constant value for fm as in previous studies would have overestimated ta by about 20% over global ocean, with the overestimation up to �45% in some regions and seasons. The 7-year (2001–2007) global ocean average ta is 0.035, with yearly average ranging from 0.031 to 0.039. Future improvement in measurements is needed to better separate anthropogenic aerosol from natural ones and to narrow down the wide range of aerosol direct radiative forcing.
Resumo:
The area of Arctic September sea ice has diminished from about 7 million km2 in the 1990s to less than 5 million km2 in five of the past seven years, with a record minimum of 3.6 million km2 in 2012 (ref. 1). The strength of this decrease is greater than expected by the scientific community, the reasons for this are not fully understood, and its simulation is an on-going challenge for existing climate models2, 3. With growing Arctic marine activity there is an urgent demand for forecasting Arctic summer sea ice4. Previous attempts at seasonal forecasts of ice extent were of limited skill5, 6, 7, 8, 9. However, here we show that the Arctic sea-ice minimum can be accurately forecasted from melt-pond area in spring. We find a strong correlation between the spring pond fraction and September sea-ice extent. This is explained by a positive feedback mechanism: more ponds reduce the albedo; a lower albedo causes more melting; more melting increases pond fraction. Our results help explain the acceleration of Arctic sea-ice decrease during the past decade. The inclusion of our new melt-pond model10 promises to improve the skill of future forecast and climate models in Arctic regions and beyond.
Resumo:
There is increasing concern that the intensification of dairy production reduces the concentrations of nutritionally desirable compounds in milk. This study therefore compared important quality parameters (protein and fatty acid profiles; α-tocopherol and carotenoid concentrations) in milk from four dairy systems with contrasting production intensities (in terms of feeding regimens and milking systems). The concentrations of several nutritionally desirable compounds (β-lactoglobulin, omega-3 fatty acids, omega-3/omega-6 ratio, conjugated linoleic acid c9t11, and/or carotenoids) decreased with increasing feeding intensity (organic outdoor ≥ conventional outdoor ≥ conventional indoors). Milking system intensification (use of robotic milking parlors) had a more limited effect on milk composition, but increased mastitis incidence. Multivariate analyses indicated that differences in milk quality were mainly linked to contrasting feeding regimens and that milking system and breed choice also contributed to differences in milk composition between production systems.
Resumo:
Aerosol-cloud interactions have the potential to modify many different cloud properties. There is significant uncertainty in the strength of these aerosol-cloud interactions in analyses of observational data, partly due to the difficulty in separating aerosol effects on clouds from correlations generated by local meteorology. The relationship between aerosol and cloud fraction (CF) is particularly important to determine, due to the strong correlation of CF to other cloud properties and its large impact on radiation. It has also been one of the hardest to quantify from satellites due to the strong meteorological covariations involved. This work presents a new method to analyze the relationship between aerosol optical depth (AOD) and CF. By including information about the cloud droplet number concentration (CDNC), the impact of the meteorological covariations is significantly reduced. This method shows that much of the AOD-CF correlation is explained by relationships other than that mediated by CDNC. By accounting for these, the strength of the global mean AOD-CF relationship is reduced by around 80%. This suggests that the majority of the AOD-CF relationship is due to meteorological covariations, especially in the shallow cumulus regime. Requiring CDNC to mediate the AOD-CF relationship implies an effective anthropogenic radiative forcing from an aerosol influence on liquid CF of −0.48 W m−2 (−0.1 to −0.64 W m−2), although some uncertainty remains due to possible biases in the CDNC retrievals in broken cloud scenes.
Resumo:
This study was conducted to determine the relationship among temperatures measured at different anatomical sites of the animal body and their daily pattern as indicative of the thermal stress in lactating dairy cows under tropical conditions. Environmental dry bulb (DBT) and black globe (BGT) temperatures and relative humidity (RH) were recorded. Rectal temperature (RT), respiratory frequency (RF), body surface (BST), internal base of tail (TT), vulva (VT) and auricular temperatures (AT) were collected, from 37 Black and White Holstein cows at 0700, 1300 and 1800 hours. RT showed a moderately and positive correlations with all body temperatures, ranging from 0.59 with TT to 0.64 with BST. Correlations among AT, VT and TT with RF were very similar (from 0.63 to 0.64) and were greater than those observed for RF with RT (0.55) or with BST (0.54). RF and RT were positively correlated to TT (0.63 and 0.59, respectively), AT (r = 0.63 for both) and VT (r = 0.64 and 0.63, respectively). Positive and very high correlations were observed among AT, VT and TT (from 0.94 to 0.97) indicating good association of temperatures measured in these anatomical sites. Correlations of BST with AT and VT were positive and very similar (0.71 and 0.72, respectively) and lower with TT (0.66). The AT, TT, VT and BST presented similar patterns and follow the variations of DBT through the day. Temperatures measured at different anatomical sites of the animal body have the potential to be used as indicative of the thermal stress in lactating dairy cows.
Resumo:
There are several different milking management systems in Latin America, because Gir cattle are reputed to be easily stressed and not well adapted to machine-milking. This paper, therefore, provides an overview of hormone release and behavior during suckling and milking in Gir cows and their crossbred offspring. Several experiments were performed to study oxytocin release during exclusive suckling or exclusive hand- and machine-milking, oxytocin, and prolactin release during a mixed suckling-milking system and oxytocin release after weaning. Cortisol concentrations and behavior were also examined. Concentration of oxytocin, released during suckling, and both types of milking were high, but the maximum concentration measured during suckling was significantly greater than that observed during exclusive milking. In the mixed suckling-milking system, the greatest oxytocin and prolactin releases were measured during suckling. Cortisol concentrations measured before, during, and after milking demonstrated that Gir x Holstein and Holstein cows were not stressed. On the other hand, although Gir had greater concentrations of cortisol, the percentage of residual milk for Gir cows was less than for dairy cows exposed to different stressful situations. In general, Gir cows and their crossbred offspring adapted to machine-milking, although these breeds can react negatively to milkers. Gir, Gir x Holstein, and Holstein cows all had similar cortisol levels during and after milking.
Resumo:
Aim of the study: Magnolia ovata (A.St.-Hil.) Spreng (formerly Talauma ovata), known as ""pinha-do-brejo"" or ""baguacu"", is a large tree widely distributed in Brazil. Its trunk bark has been used in folk medicine against fever. However, no data have been published to support the antipyretic ethnopharmacological use. This study investigated the antipyretic and anti-inflammatory effects of the ethanolic extract (EEMO). dichloromethane fraction (DCM), and the isolated compound costunolide. Materials and methods: The antipyretic and anti-inflammatory activities were evaluated in experimental models of fever and inflammation in mice. Results: The oral administration of EEMO, DCM and costunolide inhibited carrageenan (Cg)-induced paw oedema (ID(50) 72.35 (38.64-135.46) mg/kg, 5.8 (2.41-14.04) mg/kg and 0.18 (0.12-0.27) mg/kg, respectively) and was effective in abolishing lipopolysaccharide (LPS)-induced fever (30 mg/kg, 4.5 mg/kg and 0.15 mg/kg, respectively). EEMO was also effective in reducing cell migration in the pleurisy model. Intraplantar injection of costunolide also reduced the paw oedema, myeloperoxidase and N-acetyl-glucosaminidase activity induced by Cg in mice. Conclusions: Collectively, these results show, for the first time, that extracts obtained from Magnolia ovata possess antipyretic and anti-inflammatory properties, and costunolide appears to be the compound responsible for these effects. (C) 2009 Elsevier Ireland Ltd. All rights reserved.