947 resultados para Microwave sintering
Resumo:
This paper deals with the coupling of High Power Microwaves with a buried twisted pair cable. The electric field at a distance of 1km from the HPM antenna has been computed and is used for further computation of induced voltage and current. It is found that the peak of the induced current and voltage in a buried unshielded twisted pair cable at a distance of 1km from an HPM antenna of power level 10GW is 20A and 2kV respectively.
Resumo:
The structure of the Arpropargyl alcohol (ArPA) complex is determined from the rotational spectra of the parent complex and its two deuterated isotopologues, namely ArPA-D(OD) and ArPA-D(CD). The spectra confirm a geometry in which PA exists in the gauche form with Ar located in between OH and CCH groups. All a, b and c types of transitions show small splitting due to some large-amplitude motion dominated by COH torsion, as in the monomer. Splittings in a- and b-type transitions are of the order of a few kilohertz, whereas splitting in the c-type transitions is relatively larger (0.92.6 MHz) and decreases in the order ArPA>ArPA-D(CD)>ArPA-D(OD). The assignments are well supported by ab initio calculations. Atoms in molecules (AIM) and electrostatic potential calculations are used to explore the nature of the interactions in this complex. AIM calculations not only reveal the expected OHAr and Ar interactions in the Argauche-PA complex, but also novel CAr (of CH2OH group) and OHAr interactions in the Artrans-PA complex. Similar interactions are also present in the Armethanol complex.
Resumo:
Heavily nitrogenated graphene oxide containing similar to 18 wt% nitrogen, prepared by microwave synthesis with urea as the nitrogen source, shows outstanding performance as a supercapacitor electrode material, with the specific capacitance going up to 461 F g(-1).
Resumo:
The present paper is aimed to understand the sub-processes triggered by rapid heating during spark plasma sintering as well as to assess the extent to which densification and properties of metallic materials can be enhanced using such superfast consolidation process. Using nanocrystalline Cu-Pb as a model system, the influence of Pb as well as TiB2 addition on the densification mechanisms and properties are discussed. Importantly, a high hardness of 2 GPa is achieved in Cu-based nanocomposites. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
In contrast to the widely reported beneficial aspects of spark plasma sintering in developing materials with better properties, we report here two interesting aspects recorded with difficult-to-sinter titanium diboride: (a) in situ formation of second phase (TiB) and (b) inferior hardness (by similar to 30%) and elastic modulus (by similar to 20%) for spark plasma sintered TiB2, with respect to hot pressed TiB2. The formation of TiB is discussed with reference to the enhanced reaction kinetics in the presence of pulsed electric field. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
In this manuscript, rotational spectra of four new isotopologues of the S-H center dot center dot center dot pi bonded C2H4 center dot center dot center dot H2S complex, i.e., C2D4 center dot center dot center dot H2S, C2D4 center dot center dot center dot D2S, C2D4 center dot center dot center dot HDS, and (CCH4)-C-13 center dot center dot center dot H2S have been reported and analyzed. All isotopologues except C2D4 center dot center dot center dot HDS show a four line pattern whereas a doubling of the transition frequencies was observed for C2D4 center dot center dot center dot HDS. These results together with our previous report on the title complex M. Goswami, P. K. Mandal, D. J. Ramdass, and E. Arunan, Chem. Phys. Lett. 393(1-3), 22-27 (2004)] confirm that both subunits (C2H4 and H2S) are involved in large amplitude motions leading to a splitting of each rotational transition to a quartet. Further, the results also confirm that the motions which are responsible for the observed splittings involve both monomers. Molecular symmetry group analysis, considering the interchange of equivalent H atoms in H2S and C2H4 could explain the observed four line pattern and their intensities in the microwave spectrum. In addition, hydride stretching fundamentals of the complex were measured using coherence-converted population transfer Fourier Transform Microwave-infrared (IR-MW double resonance) experiments in the S-H and C-H stretch regions. Changes in the tunneling splittings upon vibrational excitation are consistent with the isotopic dependence of pure rotational transitions. A complexation shift of 2.7-6.5 cm(-1) has been observed in the two fundamental S-H stretching modes of the H2S monomer in the complex. Vibrational pre-dissociation in the bound S-H stretch has been detected whereas the instrument-limited line-shapes in other S-H and C-H stretches indicate slower pre-dissociation rate. Some local perturbations in the vibrational spectra have been observed. Two combination bands have been observed corresponding to both the S-H stretching fundamentals and what appears to be the intermolecular stretching mode at 55 cm(-1). The tunneling splitting involved in the rotation of C2H4 unit has been deduced to be 1.5 GHz from the IR-MW results. In addition, ab initio barrier heights derived for different motions of the monomers support the experimental results and provide further insight into the motions causing the splitting. (C) 2013 AIP Publishing LLC.
Resumo:
In the present investigation an attempt has been made to develop a new co-polymeric material for controlled release tablet formulations. The acrylamide grafting was successfully performed on the backbone of sago starch. The modified starch was tested for acute toxicity and drug-excipient compatibility study. The grafted material was used in making of controlled release tablets of lamivudine. The formulations were evaluated for physical characteristics such as hardness, friability, %drug content and weight variations. The in vitro release study showed that the optimized formulation exhibited highest correlation (R) value in case of Higuchi model and the release mechanism of the optimized formulation predominantly exhibited combination of diffusion and erosion process. There was a significant difference in the pharmacokinetic parameters (T-max, C-max, AUC, V-d, T-1/2 and MDT) of the optimized formulation as compared to the marketed conventional tablet Lamivir (R) was observed. The pharmacokinetics parameters were showed controlled pattern and better bioavailability. The optimized formulation exhibited good stability and release profile at the accelerated stability conditions. (c) 2013 Elsevier B.V. All rights reserved.
Resumo:
We report the synthesis of Pr6O11 microspheres self-assembled from ultra-small nanocrystals formed by the microwave irradiation of a solution of a salt of Pr in ethylene glycol (EG). The as-prepared product consists of microspheres measuring 200 to 500 nm in diameter and made of <5 nm nano-crystallites. The surface of these microspheres/nanocrystals is covered/capped with an organic layer of ethylene glycol as shown by TEM analysis and confirmed by IR spectroscopy measurements. The as-prepared product shows blue-green emission under excitation, which changes to orange-red when the product is annealed in air at 600 degrees C for 2 h. This change in luminescence behaviour can be attributed to presence of ethylene glycol layer in the as-prepared product. The samples were characterized by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), IR Spectroscopy (IR), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Rapid and facile synthesis of similar to 7 nm and similar to 100-400 nm nano-structures of anatase titania is achieved by exploiting the chemical nature of solvents through a microwave based approach. After using these nanostructures as a photoanode in dye-sensitized solar cells, a modest yet appreciable efficiency of 6.5% was achieved under the illumination of AM 1.5 G one sun (100 mW cm(-2)).
Resumo:
Spark plasma sintering (SPS) is a convenient and rapid means of producing dense ceramic compacts. However, the mechanisms responsible for rapid densification have not been identified satisfactorily, with different studies using an indirect approach yielding varied values for the densification parameters. This study involved SPS in high purity nanocrystalline alumina with temperatures ranging from 1173 to 1423K and stresses from 25 to 100MPa. A direct approach, with analyses at a constant density, revealed a stress exponent of similar to 1 and an inverse grain size dependence of similar to 3, consistent with Coble creep process. Whereas the direct approach gives a stress exponent of similar to 1, the indirect approach used previously gives stress exponents ranging from similar to 2.2 to 3.5 with the same data, thereby revealing potentially spurious values of the densification parameters from conventional indirect approaches to characterizing densification. The rapid densification during SPS is related to the finer grain sizes retained with the rapid heating rates and the imposed stress that enhances the driving force for densification.
Resumo:
We report a novel, rapid, and low-temperature method for the synthesis of undoped and Eu-doped GdOOH spherical hierarchical structures, without using any structure-directing agents, through the microwave irradiation route. The as-prepared product consists of nearly monodisperse microspheres measuring about 1.3 mu m in diameter. Electron microscopy reveals that each microsphere is an assembly of two-dimensional nanoflakes (about 30 nm thin) which, in turn, result from the assembly of crystallites measuring about 9 nm in diameter. Thus, a three-level hierarchy can be seen in the formation of the GdOOH microspheres: from nanoparticles to 2D nanoflakes to 3D spherical structures. When doped with Eu3+ ions, the GdOOH microspheres show a strong red emission, making them promising candidates as phosphors. Finally, thermal conversion at modest temperatures leads to the formation of corresponding oxide structures with enhanced luminescence, while retaining the spherical morphology of their oxyhydroxide precursor.
Resumo:
Ultra-small crystals of undoped and Eu-doped gadolinium oxide (Gd2O3) were synthesised by a simple, rapid microwave-assisted route, using benzyl alcohol as the reaction solvent. XRD, XPS and TEM analysis reveal that the as-prepared powder material consists of nearly monodisperse Gd2O3 nanocrystals with an average diameter of 5.2 nm. The nanocrystals show good magnetic behaviour and exhibit a larger reduction in relaxation time of water protons than the standard Gd-DTPA complex currently used in MRI imaging. Cytotoxicity studies (both concentration- and time-dependent) of the Gd2O3 nanocrystals show no adverse effect on cell viability, evidencing their high biological compatibility. Finally, Eu:Gd2O3 nanocrystals were prepared by a similar route and the red luminescence of Eu3+ activator ions was used to study the cell permeability of the nanocrystals. Red fluorescence from Eu3+ ions observed by fluorescence microscopy shows that the nanocrystals (Gd2O3 and Eu:Gd2O3) can permeate not only the cell membrane but can also enter the cell nucleus, rendering them candidate materials not only for MRI imaging but also for drug delivery when tagged or functionalized with specific drug molecules.
Resumo:
Two unique materials were developed, like graphene oxide (GO) sheets covalently grafted on to barium titanate (BT) nanoparticles and cobalt nanowires (Co-NWs), to attenuate the electromagnetic (EM) radiations in poly(vinylidene fluoride) (PVDF)-based composites. The rationale behind using either a ferroelectric or a ferromagnetic material in combination with intrinsically conducting nanoparticles (multiwall carbon nanotubes, CNTs), is to induce both electrical and magnetic dipoles in the system. Two key properties, namely, enhanced dielectric constant and magnetic permeability, were determined. PVDF/BT-GO composites exhibited higher dielectric constant compared to PVDF/BT and PVDF/GO composites. Co-NWs, which were synthesized by electrodeposition, exhibited saturation magnetization (M-s) of 40 emu/g and coercivity (Hc) of 300 G. Three phase hybrid composites were prepared by mixing CNTs with either BT-GO or Co-NWs in PVDF by solution blending. These nanoparticles showed high electrical conductivity and significant attenuation of EM radiations both in the X-band and in the Ku-band frequency. In addition, BT-GO/CNT and Co-NWs/CNT particles also enhanced the thermal conductivity of PVDF by ca. 8.7- and 9.3-fold in striking contrast to neat PVDF. This study open new avenues to design flexible and lightweight electromagnetic interference shielding materials by careful selection of functional nanoparticles
Resumo:
The present work reports the impact of sintering conditions on the phase stability in hydroxyapatite (HA) magnetite (Fe3O4) bulk composites, which were densified using either pressureless sintering in air or by rapid densification via hot pressing in inert atmosphere. In particular, the phase abundances, structural and magnetic properties of the (1-x)HA-xFe(3)O(4) (x = 5, 10, 20, and 40 wt %) composites were quantified by corroborating results obtained from Rietveld refinement of the X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Mossbauer spectroscopy. Post heat treatment phase analysis revealed a major retention of Fe3O4 in argon atmosphere, while it was partially/completely oxidized to hematite (alpha-Fe2O3) in air. Mossbauer results suggest the high-temperature diffusion of Fe3+ into hydroxyapatite lattice, leading to the formation of Fe-doped HA. A preferential occupancy of Fe3+ at the Ca(1) and Ca(2) sites under hot-pressing and conventional sintering conditions, respectively, was observed. The lattice expansion in HA from Rietveld analysis correlated well with the amounts of Fe-doped HA determined from the Mossbauer spectra. Furthermore, hydroxyapatite in the monoliths and composites was delineated to exist in the monoclinic (P2(1)/b) structure as against the widely reported hexagonal (P6(3)/m) crystal lattice. The compositional similarity of iron doping in hydroxyapatite to that of tooth enamel and bone presents HA-Fe3O4 composites as potential orthopedic and dental implant materials.