921 resultados para Microstrip patch resonator
Resumo:
The reliability of ants as bioindicators of ecosystem condition is dependent on the consistency of their response to localised habitat characteristics, which may be modified by larger-scale effects of habitat fragmentation and loss. We assessed the relative contribution of habitat fragmentation, habitat loss and within-patch habitat characteristics in determining ant assemblages in semi-arid woodland in Queensland, Australia. Species and functional group abundance were recorded using pitfall traps across 20 woodland patches in landscapes that exhibited a range of fragmentation states. Of fragmentation measures, changes in patch area and patch edge contrast exerted the greatest influence on species assemblages, after accounting for differences in habitat loss. However, 35% of fragmentation effects on species were confounded by the effects of habitat characteristics and habitat loss. Within-patch habitat characteristics explained more than twice the amount of species variation attributable to fragmentation and four times the variation explained by habitat loss. The study indicates that within-patch habitat characteristics are the predominant drivers of ant composition. We suggest that caution should be exercised in interpreting the independent effects of habitat fragmentation and loss on ant assemblages without jointly considering localised habitat attributes and associated joint effects.
Resumo:
The selection of different patch types for grazing by cattle in tropical savannas is well documented. Advances in high resolution satellite imagery and computing power now allow us to identify patch types over an entire paddock, combined with GPS collars as a non instrusive method of capturing positional data, an accurate and comprehensive picture of landscape use by cattle can be quantified.
Resumo:
Patch selection by grazing animals is difficult to quantify, particularly in large, extensive paddocks like those in northern Australia. However, advances in high resolution satellite imagery now allow identification of patch types over an entire paddock which combined with GPS collars to capture positional data, can give an accurate and comprehensive picture of landscape use by cattle.
Resumo:
A monolithic surface acoustic wave (SAW) resonator operating at 156 MHz, in which the frequency controlling element is a Fabry–Perot type of SAW resonator and the gain element is a monolithic SAW amplifier (SiOx/InSb/SiOx structure located inside the SAW resonator cavity) is described and experimental details presented. Based on the existing experimental data, an uhf monolithic ring resonator oscillator is proposed. Journal of Applied Physics is copyrighted by The American Institute of Physics.
Resumo:
This paper presents the results of the rise time calculation of a SAW resonator. The total rise time is given by rise time = [(rise time of cavity)2 + (rise time of reflectors)2 + (rise time of IDT) 2 ]. 1/2 These rise times are calculated in terms of the effective length of the cavity , the characteristics of the reflector, and the number of finger pairs in the IDT. The rise time of a 38 MHz one-port resonator on Y-Z LiNb03 calculated using this approach is found to be in good agreement with experimental results .
Resumo:
In the fields of organic electronics and biotechnology, applications for organic polymer thin films fabricated using low-temperature non-equilibrium plasma techniques are gaining significant attention because of the physical and chemical stability of thin films and the low cost of production. Polymer thin films were fabricated from non-synthetic terpinen-4-ol using radiofrequency polymerization (13.56 MHz) on low loss dielectric substrates and their permittivity properties were ascertained to determine potential applications for these organic films. Real and imaginary parts of permittivity as a function of frequency were measured using the variable angle spectroscopic ellipsometer. The real part of permittivity (k) was found to be between 2.34 and 2.65 in the wavelength region of 400–1100 nm, indicating a potential low-k material. These permittivity values were confirmed at microwave frequencies. Dielectric properties of polyterpenol films were measured by means of split post dielectric resonators (SPDRs) operating at frequencies of 10 GHz and 20 GHz. Permittivity increased for samples deposited at higher RF energy – from 2.65 (25 W) to 2.83 (75 W) measured by a 20-GHz SPDR and from 2.32 (25 W) to 2.53 (100 W) obtained using a 10-GHz SPDR. The error in permittivity measurement was predominantly attributed to the uncertainty in film thickness measurement.
Resumo:
This paper presents a generalized approach to design an electromagnetically coupled microstrip ring antenna for dual-band operation. By widening two opposite sides of a square ring antenna, its fractional bandwidth at the primary resonance mode can be increased significantly so that it may be used for practical applications. By attaching a stub to the inner edge of the side opposite to the feed arm, some of the losses in electrical length caused by widening can be regained. More importantly, this addition also alters the current distribution on the antenna and directs radiations at the second resonant frequency towards boresight. It has also been observed that for the dual frequency configurations studied, the ratio of the resonant frequencies (center dot r(2)center dot center dot r(1)) can range between 1.55 and 2.01. This shows flexibility in designing dual frequency antennas with a desired pair of resonant frequencies.
Resumo:
Filters and other devices using photonic bandgap (PBG) theory are typically implemented in microstrip lines by etching periodic holes on the ground plane of the microstrip. The period of such several holes corresponds to nearly half the guided wavelength of the transmission line. In this paper we study the effects of miniaturization of the PBG device by meandering the microstrip line about one single hole in the ground plane. A comparison of the S-parameters and dispersion behavior of the modified geometry and a conventional PBG device with a straight microstrip line shows that these devices have similar behaviors.
Resumo:
In this paper we propose and analyze a novel racetrack resonator based vibration sensor for inertial grade application. The resonator is formed with an Anti Resonance Reflecting Optical Waveguide (ARROW) structure which offers the advantage of low loss and single mode propagation. The waveguide is designed to operate at 1310nm and TM mode of propagation since the Photo-elastic co-efficient is larger than TE mode in a SiO2/ Si3N4/ SiO2. The longer side of the resonator is placed over a cantilever beam with a proof mass. A single bus waveguide is coupled to the resonator structure. When the beam vibrates the resonator arm at the foot of the cantilever experiences maximum stress. Due to opto-mechanical coupling the effective refractive index of the resonator changes hence the resonance wavelength shifts. The non uniform cantilever beam has a dimension of 1.75mm X 0.45mm X 0.020mm and the proof mass has a dimension of 3mm X 3mm X 0.380mm. The proof mass lowers the natural frequency of vibration to 410Hz, hence designed for inertial navigation application. The operating band of frequency is from DC to 100Hz and acceleration of less than 1g. The resonator has a Free Spectral Range (FSR) of 893pm and produces a phase change of 22.4mrad/g.
Resumo:
The goal of this study is the multi-mode structural vibration control in the composite fin-tip of an aircraft. Structural model of the composite fin-tip with surface bonded piezoelectric actuators is developed using the finite element method. The finite element model is updated experimentally to reflect the natural frequencies and mode shapes accurately. A model order reduction technique is employed for reducing the finite element structural matrices before developing the controller. Particle swarm based evolutionary optimization technique is used for optimal placement of piezoelectric patch actuators and accelerometer sensors to suppress vibration. H{infty} based active vibration controllers are designed directly in the discrete domain and implemented using dSpace® (DS-1005) electronic signal processing boards. Significant vibration suppression in the multiple bending modes of interest is experimentally demonstrated for sinusoidal and band limited white noise forcing functions.
Resumo:
Micromachined antennas are recieving great interest as carrier frequencies move higher into the frequency spectrum due to their superior performance and amenability for integration with active devices. However their design is cumbersome owing to the complexity of the structure. To overcome this, in this paper, an iterative procedure is suggested to facilitate fast design of micromachined patch antennas based on a simulation study. A microstrip line on a micromachined Silicon substrate is simulated in a full wave simulator by solving for the ports only. From the obtained propagation constant, the effective dilectric constant for the micromachined substrate is estimated. The process is repeated for a number of values of the width of the microstrip and a plot is made for the variation of the effective dielectric constant with the microstrip width. Then an iterative method in combination with the extrapolated permittivity which includes the effect of cavity extensions in all the directions, is used to obtain the width and the corresponding effective dielectric constant. This method has been verified to be quite accurate by comparison with full wave simulations and hence it can function as a good starting point for designers to design micromachined antennas.
Resumo:
Microwave sources used in present day applications are either multiplied source derived from basic quartz crystals, or frequency synthesizers. The frequency multiplication method increases FM noise power considerably, and has very low efficiency in addition to being very complex and expensive. The complexity and cost involved demands a simple, compact and tunable microwave source. A tunable dielectric resonator oscillator(DRO) is an ideal choice for such applications. In this paper, the simulation, design and realization of a tunable DRO with a center frequency of 6250 MHz is presented. Simulation has been carried out on HP-Ees of CAD software. Mechanical and electronic tuning features are provided. The DRO operates over a frequency range of 6235 MHz to 6375 MHz. The output power is +5.33 dBm at centre frequency. The performance of the DRO is as per design with respect to phase noise, harmonic levels and tunability. and hence, can conveniently be used for the intended applications.
Resumo:
Adhesively-bonded composite patch repairs over cracked or corrosion-damaged metallic aircraft structures have shown great promise for extending life of ageing structures. This study presents the numerical investigation into the interface behaviour of adhesively-bonded cracked aluminum alloy substrate patched with fibre-reinforced composite material. The adhesive is modelled as an elasto-plastic bilinear material to characterise the debond behaviour, while the defective substrate is regarded as linear elastic continuum. Two typical patch shapes were selected based on information available in the literature. Geometric and material nonlinear analyses for square and octagonal patches were performed to capture peel and shear stresses developed between the substrate and the patch to examine the possibility of interface delamination/debonding. Parametric studies on adhesive thickness and patch thickness were carried out to predict their infuence on damage tolerance of repaired structures.
Resumo:
Adhesively-bonded composite patch repairs over cracked or corrosion-damaged metallic aircraft structures have shown great promise for extending life of ageing structures. This study presents the numerical investigation into the interface behaviour of adhesively-bonded cracked aluminum alloy substrate patched with fibre-reinforced composite material. The adhesive is modelled as an elasto-plastic bilinear material to characterise the debond behaviour, while the defective substrate is regarded as linear elastic continuum. Two typical patch shapes were selected based on information available in the literature. Geometric and material nonlinear analyses for square and octagonal patches were performed to capture peel and shear stresses developed between the substrate and the patch to examine the possibility of interface delamination/debonding. Parametric studies on adhesive thickness and patch thickness were carried out to predict their infuence on damage tolerance of repaired structures.
Resumo:
The design and analysis of a coplanar capacitive fed microstrip antenna suspended above the ground plane is presented. It is demonstrated that the proposed approach can be used for designing antennas with impedance bandwidth of about 50% and a good gain to operate in various microwave bands. The model of the antenna incorporates the capacitive feed strip which is fed by a coaxial probe using equivalent circuit approach, and matches simulation and experimental results. The capacitive feed strip used here is basically a rectangular microstrip capacitor formed from a truncated microstrip transmission line and all its open ends are represented by terminal or edge capacitances. The error analysis was carried out for validity of the model for different design parameters. The antenna configuration can be used where unidirectional radiation patterns are required over a wide bandwidth.