951 resultados para Micropattern gaseous detectors
Resumo:
Radiocarbon dating by means of accelerator mass spectrometry (AMS) is a well-established method for samples containing carbon in the milligram range. However, the measurement of small samples containing less than 50 lg carbon often fails. It is difficult to graphitise these samples and the preparation is prone to contamination. To avoid graphitisation, a solution can be the direct measurement of carbon dioxide. The MICADAS, the smallest accelerator for radiocarbon dating in Zurich, is equipped with a hybrid Cs sputter ion source. It allows the measurement of both, graphite targets and gaseous CO2 samples, without any rebuilding. This work presents experiences dealing with small samples containing 1-40 lg carbon. 500 unknown samples of different environmental research fields have been measured yet. Most of the samples were measured with the gas ion source. These data are compared with earlier measurements of small graphite samples. The performance of the two different techniques is discussed and main contributions to the blank determined. An analysis of blank and standard data measured within years allowed a quantification of the contamination, which was found to be of the order of 55 ng and 750 ng carbon (50 pMC) for the gaseous and the graphite samples, respectively. For quality control, a number of certified standards were measured using the gas ion source to demonstrate reliability of the data.
Resumo:
We present a real-world problem that arises in security threat detection applications. The problem consists of deploying mobile detectors on moving units that follow predefined routes. Examples of such units are buses, coaches, and trolleys. Due to a limited budget not all available units can be equipped with a detector. The goal is to equip a subset of units such that the utility of the resulting coverage is maximized. Existing methods for detector deployment are designed to place detectors in fixed locations and are therefore not applicable to the problem considered here. We formulate the planning problem as a binary linear program and present a coverage heuristic for generating effective deployments in short CPU time. The heuristic has theoretical performance guarantees for important special cases of the problem. The effectiveness of the coverage heuristic is demonstrated in a computational analysis based on 28 instances that we derived from real-world data.
Resumo:
This Habilitationsschrift (Habilitation thesis) is focused on my research activities on medical applications of particle physics and was written in 2013 to obtain the Venia Docendi (Habilitation) in experimental physics at the University of Bern. It is based on selected publications, which represented at that time my major scientific contributions as an experimental physicist to the field of particle accelerators and detectors applied to medical diagnostics and therapy. The thesis is structured in two parts. In Part I, Chapter 1 presents an introduction to accelerators and detectors applied to medicine, with particular focus on cancer hadrontherapy and on the production of radioactive isotopes. In Chapter 2, my publications on medical particle accelerators are introduced and put into their perspective. In particular, high frequency linear accelerators for hadrontherapy are discussed together with the new Bern cyclotron laboratory. Chapter 3 is dedicated to particle detectors with particular emphasis on three instruments I contributed to propose and develop: segmented ionization chambers for hadrontherapy, a proton radiography apparatus with nuclear emulsion films, and a beam monitor detector for ion beams based on doped silica fibres. Selected research and review papers are contained in Part II. For copyright reasons, they are only listed and not reprinted in this on-line version. They are available on the websites of the journals.
Resumo:
BACKGROUND Continuous venovenous hemodialysis (CVVHD) may generate microemboli that cross the pulmonary circulation and reach the brain. The aim of the present study was to quantify (load per time interval) and qualify (gaseous vs. solid) cerebral microemboli (CME), detected as high-intensity transient signals, using transcranial Doppler ultrasound. MATERIALS AND METHODS Twenty intensive care unit (ICU group) patients requiring CVVHD were examined. CME were recorded in both middle cerebral arteries for 30 minutes during CVVHD and a CVVHD-free interval. Twenty additional patients, hospitalized for orthopedic surgery, served as a non-ICU control group. Statistical analyses were performed using the Mann-Whitney U test or the Wilcoxon matched-pairs signed-rank test, followed by Bonferroni corrections for multiple comparisons. RESULTS In the non-ICU group, 48 (14.5-169.5) (median [range]) gaseous CME were detected. In the ICU group, the 67.5 (14.5-588.5) gaseous CME detected during the CVVHD-free interval increased 5-fold to 344.5 (59-1019) during CVVHD (P<0.001). The number of solid CME was low in all groups (non-ICU group: 2 [0-5.5]; ICU group CVVHD-free interval: 1.5 [0-14.25]; ICU group during CVVHD: 7 [3-27.75]). CONCLUSIONS This observational pilot study shows that CVVHD was associated with a higher gaseous but not solid CME burden in critically ill patients. Although the differentiation between gaseous and solid CME remains challenging, our finding may support the hypothesis of microbubble generation in the CVVHD circuit and its transpulmonary translocation toward the intracranial circulation. Importantly, the impact of gaseous and solid CME generated during CVVHD on brain integrity of critically ill patients currently remains unknown and is highly debated.
Resumo:
We study the sensitivity of multi ton-scale time projection chambers using a liquid xenon target, e.g., the proposed DARWIN instrument, to spin-independent and spin-dependent WIMP-nucleon scattering interactions. Taking into account realistic backgrounds from the detector itself as well as from neutrinos, we examine the impact of exposure, energy threshold, background rejection efficiency and energy resolution on the dark matter sensitivity. With an exposure of 200 t x y and assuming detector parameters which have been already demonstrated experimentally, spin-independent cross sections as low as 2.5×10−49 cm2 can be probed for WIMP masses around 40 GeV/c2. Additional improvements in terms of background rejection and exposure will further increase the sensitivity, while the ultimate WIMP science reach will be limited by neutrinos scattering coherently off the xenon nuclei.
Resumo:
The Radiological Physics Center (RPC) uses both on-site and remote reviews to credential institutions for participation in clinical trials. Anthropomorphic quality assurance (QA) phantoms are one tool the RPC uses to remotely audit institutions, which include thermoluminescent dosimeters (TLDs) and radiochromic film. The RPC desires to switch from TLD as the absolute dosimeter in the phantoms, to optically stimulated luminescent dosimeters (OSLDs), but a problem lies in the angular dependence exhibited by the OSLD. The purpose of this study was to characterize the angular dependence of OSLD and establish a correction factor if necessary, to provide accurate dosimetric measurements as a replacement for TLD in the QA phantoms. A 10 cm diameter high-impact polystyrene spherical phantom was designed and constructed to hold an OSLD to study the angular response of the dosimeter under the simplest of circumstances for both coplanar and non-coplanar treatment deliveries. OSLD were irradiated in the spherical phantom, and the responses of the dosimeter from edge-on angles were normalized to the response when irradiated with the beam incident normally on the surface of the dosimeter. The average normalized response was used to establish an angular correction factor for 6 MV and 18 coplanar treatments, and for 6 MV non-coplanar treatments specific to CyberKnife. The RPC pelvic phantom dosimetry insert was modified to hold OSLD, in addition to the TLD, adjacent to the planes of film. Treatment plans of increasing angular beam delivery were developed, three in Pinnacle v9.0 (4-field box, IMRT, and VMAT) and one in Accuray’s MultiPlan v3.5.3 (CyberKnife). The plans were delivered to the pelvic phantom containing both TLD and OSLD in the target volume. The pelvic phantom was also sent to two institutions to be irradiated as trials, one delivering IMRT, and the other a CyberKnife treatment. For the IMRT deliveries and the two institution trials, the phantom also included film in the sagittal and coronal planes. The doses measured from the TLD and OSLD were calculated for each irradiation, and the angular correction factors established from the spherical phantom irradiations were applied to the OSLD dose. The ratio of the TLD dose to the angular corrected OSLD dose was calculated for each irradiation. The corrected OSLD dose was found to be within 1% of the TLD measured dose for all irradiations, with the exception of the in-house CyberKnife deliveries. The films were normalized to both TLD measured dose and the corrected OSLD dose. Dose profiles were obtained and gamma analysis was performed using a 7%/4 mm criteria, to compare the ability of the OSLD, when corrected for the angular dependence, to provide equivalent results to TLD. The results of this study indicate that the OSLD can effectively be used as a replacement for TLD in the RPC’s anthropomorphic QA phantoms for coplanar treatment deliveries when a correction is applied for the dosimeter’s angular dependence.
Resumo:
Proton therapy is a high precision technique in cancer radiation therapy which allows irradiating the tumor with minimal damage to the surrounding healthy tissues. Pencil beam scanning is the most advanced dose distribution technique and it is based on a variable energy beam of a few millimeters FWHM which is moved to cover the target volume. Due to spurious effects of the accelerator, of dose distribution system and to the unavoidable scattering inside the patient's body, the pencil beam is surrounded by a halo that produces a peripheral dose. To assess this issue, nuclear emulsion films interleaved with tissue equivalent material were used for the first time to characterize the beam in the halo region and to experimentally evaluate the corresponding dose. The high-precision tracking performance of the emulsion films allowed studying the angular distribution of the protons in the halo. Measurements with this technique were performed on the clinical beam of the Gantry1 at the Paul Scherrer Institute. Proton tracks were identified in the emulsion films and the track density was studied at several depths. The corresponding dose was assessed by Monte Carlo simulations and the dose profile was obtained as a function of the distance from the center of the beam spot.
Resumo:
The AEgIS experiment at CERN aims to perform the first direct measurement of gravitational interaction between matter and antimatter by measuring the deviation of a cold antihydrogen beam in the Earth gravitational field. The design of the experiment has been recently updated to include emulsion films as position sensitive detector. The submicrometric position accuracy of emulsions leads indeed to a significant improvement of the experimental sensitivity. We present results of preliminary tests and discuss perspectives for the final measurement.
Resumo:
In this paper, we show room temperature operation of a quantum well infrared photodetector (QWIP) using lateral conduction through ohmic contacts deposited at both sides of two n-doped quantum wells. To reduce the dark current due to direct conduction in the wells, we apply an electric field between the quantum wells and two pinch-off Schottky gates, in a fashion similar to a field effect device. Since the normal incidence absorption is strongly reduced in intersubband transitions in quantum wells, we first analyze the response of a detector based on quantum dots (QD). This QD device shows photocurrent signal up to 150 K when it is processed in conventional vertical detector. However, it is possible to observe room temperature signal when it is processed in a lateral structure. Finally, the room temperature photoresponse of the QWIP is demonstrated, and compared with theory. An excellent agreement between the estimated and measured characteristics of the device is found
Resumo:
We have developed a new projector model specifically tailored for fast list-mode tomographic reconstructions in Positron emission tomography (PET) scanners with parallel planar detectors. The model provides an accurate estimation of the probability distribution of coincidence events defined by pairs of scintillating crystals. This distribution is parameterized with 2D elliptical Gaussian functions defined in planes perpendicular to the main axis of the tube of response (TOR). The parameters of these Gaussian functions have been obtained by fitting Monte Carlo simulations that include positron range, acolinearity of gamma rays, as well as detector attenuation and scatter effects. The proposed model has been applied efficiently to list-mode reconstruction algorithms. Evaluation with Monte Carlo simulations over a rotating high resolution PET scanner indicates that this model allows to obtain better recovery to noise ratio in OSEM (ordered-subsets, expectation-maximization) reconstruction, if compared to list-mode reconstruction with symmetric circular Gaussian TOR model, and histogram-based OSEM with precalculated system matrix using Monte Carlo simulated models and symmetries.
Resumo:
This paper is on homonymous distributed systems where processes are prone to crash failures and have no initial knowledge of the system membership (?homonymous? means that several processes may have the same identi?er). New classes of failure detectors suited to these systems are ?rst de?ned. Among them, the classes H? and H? are introduced that are the homonymous counterparts of the classes ? and ?, respectively. (Recall that the pair h?,?i de?nes the weakest failure detector to solve consensus.) Then, the paper shows how H? and H? can be implemented in homonymous systems without membership knowledge (under different synchrony requirements). Finally, two algorithms are presented that use these failure detectors to solve consensus in homonymous asynchronous systems where there is no initial knowledge ofthe membership. One algorithm solves consensus with hH?, H?i, while the other uses only H?, but needs a majority of correct processes. Observe that the systems with unique identi?ers and anonymous systems are extreme cases of homonymous systems from which follows that all these results also apply to these systems. Interestingly, the new failure detector class H? can be implemented with partial synchrony, while the analogous class A? de?ned for anonymous systems can not be implemented (even in synchronous systems). Hence, the paper provides us with the ?rst proof showing that consensus can be solved in anonymous systems with only partial synchrony (and a majority of correct processes).