986 resultados para Microbial population
Resumo:
This study aimed to determine the frequency of Chlamydia trachomatis (CT) infection among high risk Brazilian women and evaluate its association with vaginal flora patterns.This was a cross-sectional study, performed in an outpatient clinic of Bauru State Hospital, So Paulo, Brazil. A total of 142 women were included from 2006 to 2008. Inclusion criteria was dyspareunia, pain during bimanual exam, presence of excessive cervical mucus, cervical ectopy or with three or more episodes of abnormal vaginal flora (AVF) in the previous year before enrollment. Endocervical CT testing was performed by PCR. Vaginal swabs were collected for microscopic assessment of the microbial flora pattern. Gram-stained smears were classified in normal, intermediate or bacterial vaginosis (BV), and recognition of Candida sp. morphotypes. Wet mount smears were used for detection of Trichomonas vaginalis and aerobic vaginitis (AV).Thirty-four of 142 women (23.9%) tested positive for CT. AVF was found in 50 (35.2%) cases. The most frequent type of AVF was BV (17.6%). CT was strongly associated with the presence of AV (n = 7, 4.9%, P = 0.018), but not BV (n = 25, 17.6%, P = 0.80) or intermediate flora (n = 18, 12.7%, P = 0.28).A high rate of chlamydial infection was found in this population. Chlamydia infection is associated with aerobic vaginitis.
Resumo:
Nine ruminally cannulated cows fed different energy sources were used to evaluate an avianderived polyclonal antibody preparation against specific ruminal bacteria and monensin on microbial community diversity. The experimental design was three Latin squares 3 x 3 distinguished by the main energy source in the diet [dry-ground corn grain, high moisture corn silage or citrus pulp]. Inside each Latin square, animals received one of the feed additives per period [control, monensin or polyclonal antibody preparation]. Each period lasted 21 days where 20 were used for treatments adaptation and the last one for sampling collection. Microbial diversity was evaluated by protozoa counts and denaturing gradient gel electrophoresis. Polyclonal antibodies plus citrus pulp (CiPu) addition in the diet resulted in an increase of relative counting of Isotricha protozoa that indicates a possible effect on this ruminal ciliate population. In general lines, in the present experiment, it was not possible to assign that there was a pattern in the structures of amplification of Bacteria and Archaea communities of the ruminal content. Oral passive immunization is a technology that arises as an effective alternative for feed additive production. Further research is still necessary to better understand its mechanisms of action.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The degradation of polychlorinated biphenyls (PCBs) was investigated under fermentativemethanogenic conditions for up to 60 days in the presence of anaerobic biomass from a full-scale UASB reactor. The low methane yields in the PCBs-spiked batch reactors suggested that the biomass had an inhibitory effect on the methanogenic community. Reactors containing PCBs and co-substrates (ethanol/ sodium formate) exhibited substantial PCB reductions from 0.7 to 0.2 mg mL-1 . For the Bacteria domain, the PCBs-spiked reactors were grouped with the PCB-free reactors with a similarity of 55 %, which suggested the selection of a specific population in the presence of PCBs. Three genera of bacteria were found exclusively in the PCB-spiked reactors and were identified using pyrosequencing analysis, Sedimentibacter, Tissierela and Fusibacter. Interestingly, the Sedimentibacter, which was previously correlated with the reductive dechlorination of PCBs, had the highest relative abundance in the RCS-PCB (7.4 %) and RCS-PCB-PF (12.4 %) reactors. Thus, the anaerobic sludge from the UASB reactor contains bacteria from the Firmicutes phylum that are capable of degrading PCBs.
Resumo:
The main objective of the present work was to study nutritive strategies for lessening the CH4 formation associated to ruminant tropical diets. In vitro gas production technique was used for evaluating the effect of tannin-rich plants, essential oils, and biodiesel co-products on CH4 formation in three individual studies and a small chamber system to measure CH4 released by sheep for in vivo studies was developed. Microbial rumen population diversity from in vitro assays was studied using qPCR. In vitro studies with tanniniferous plants, herbal plant essential oils derived from thyme, fennel, ginger, black seed, and Eucalyptus oil (EuO) added to the basal diet and cakes of oleaginous plants (cotton, palm, castor plant, turnip, and lupine), which were included in the basal diet to replace soybean meal, presented significant differences regarding fermentation gas production and CH4 formation. In vivo assays were performed according to the results of the in vitro assays. , when supplemented to a basal diet (Tifton-85 hay sp, corn grain, soybean meal, cotton seed meal, and mineral mixture) fed to adult Santa Ines sheep reduced enteric CH4 emission but the supplementation of the basal diet with EuO did not affect ( > 0.05) methane released. Regarding the microbial studies of rumen population diversity using qPCR with DNA samples collected from the in vitro trials, the results showed shifts in microbial communities of the tannin-rich plants in relation to control plant. This research demonstrated that tannin-rich , essential oil from eucalyptus, and biodiesel co-products either in vitro or in vivo assays showed potential to mitigate CH4 emission in ruminants. The microbial community study suggested that the reduction in CH4 production may be attributed to a decrease in fermentable substrate rather than to a direct effect on methanogenesis.
Resumo:
The biotransformation of the sesquiterpene lactone tagitinin C by the fungus Aspergillus terreus MT 5.3 yielded a rare derivative that was elucidated by spectrometric methods. The fungus led to the formation of a different product through an unusual epoxidation reaction between C4 and C5, formation of a C3,C10 ether bridge, and a methoxylation of the C1 of tagitinin C. The chemical structure of the product, namely 1 beta-methoxy-3 alpha-hydroxy-3,10 beta-4,5 alpha-diepoxy-8 beta-isobutyroyloxygermacr-11(13)-en-6 alpha,12-olide, is the same as that of a derivative that was recently isolated from the flowers of a Brazilian population of Mexican sunflower (Tithonia diversifolia), which is the source of the substrate tagitinin C. The in vitro cytotoxic activity of the substrate and the biotransformed product were evaluated in HL-60 cells using an MTT assay, and both compounds were found to be cytotoxic. We show that soil fungi may be useful in the biotransformation of sesquiterpene lactones, thereby leading to unusual changes in their chemical structures that may preserve or alter their biological activities, and may also mimic plant biosynthetic pathways for production of secondary metabolites.
Resumo:
The principal aim of this research project has been the evaluation of the specific role of yeasts in ripening processes of dry-cured meat products, i.e. speck and in salami produced by adding Lactobacilli starter cultures, i.e. L. sakei, L. casei, L. fermentum, L. rhamnosus, L.sakei + S.xylosus. In particular the contribution of the predominant yeasts to the hydrolytic patterns of meat proteins has been studied both in model system and in real products. In fact, although several papers have been published on the microbial, enzymatic, aromatic and chemical characterization of dry-cured meat e.g. ham over ripening, the specific role of yeasts has been often underestimated. Therefore this research work has been focused on the following aspects: 1. Characterization of the yeasts and lactic acid bacteria in samples of speck produced by different farms and analyzed during the various production and ripening phases 2. Characterization of the superficial or internal yeasts population in salami produced with or without the use of lactobacilli as starter cultures 3. Molecular characterization of different strains of yeasts and detection of the dominant biotypes able to survive despite environmental stress factors (such as smoke, salt) 4. Study of the proteolytic profiles of speck and salami during the ripening process and comparison with the proteolytic profiles produced in meat model systems by a relevant number of yeasts isolated from speck and salami 5. Study of the proteolytic profiles of Lactobacilli starter cultures in meat model systems 6. Comparative statistical analysis of the proteolytic profiles to find possible relationships between specific bands and peptides and specific microorganisms 7. Evaluation of the aromatic characteristics of speck and salami to assess relationships among the metabolites released by the starter cultures or the dominant microflora
Resumo:
Gut microbial acquisition during the early stage of life is an extremely important event since it affects the health status of the host. In this contest the healthy properties of the genus Bifidobacterium have a central function in newborns. The aim of this thesis was to explore the dynamics of the gut microbial colonization in newborns and to suggest possible strategies to maintain or restore a correct balance of gut bacterial population in infants. The first step of this work was to review the most recent studies on the use of probiotics and prebiotics in infants. Secondly, in order to prevent or treat intestinal disorders that may affect newborns, the capability of selected Bifidobacterium strains to reduce the amount of Enterobacteriaceae and against the infant pathogen Streptococcus agalactiae was evaluated in vitro. Furthermore, the ability of several commercial fibers to stimulate selectively the growth of bifidobacterial strains was checked. Finally, the gut microbial composition in the early stage of life in response to the intrapartum antibiotic prophylaxis (IAP) against group B Streptococcus was studied using q-PCR, DGGE and next generation sequencing. The results globally showed that Bifidobacterium breve B632 strain is the best candidate for the use in a synbiotic product coupled to a mixture of two selected prebiotic fibers (galactooligosaccharides and fructooligosaccharides) for gastrointestinal disorders in infants. Moreover, the early gut microbial composition was affected by IAP treatment with infants showing lower counts of Bifidobacterium spp. and Bacteroides spp. coupled to a decrement of biodiversity of bacteria, compared to control infants. These studies have shown that IAP could affect the early intestinal balance in infants and they have paved the way to the definition of new strategies alternative to antibiotic treatment to control GBS infection in pregnant women.
Resumo:
The EBPR (Enhanced Biological Phosphorus Removal) is a type of secondary treatment in WWTPs (WasteWater Treatment Plants), quite largely used in full-scale plants worldwide. The phosphorus occurring in aquatic systems in high amounts can cause eutrophication and consequently the death of fauna and flora. A specific biomass is used in order to remove the phosphorus, the so-called PAOs (Polyphosphate Accumulating Organisms) that accumulate the phosphorus in form of polyphosphate in their cells. Some of these organisms, the so-called DPAO (Denitrifying Polyphosphate Accumulating Organisms) use as electron acceptor the nitrate or nitrite, contributing in this way also to the removal of these compounds from the wastewater, but there could be side reactions leading to the formation of nitrous oxides. The aim of this project was to simulate in laboratory scale a EBPR, acclimatizing and enriching the specialized biomass. Two bioreactors were operated as Sequencing Batch Reactors, one enriched in Accumulibacter, the other in Tetrasphaera (both PAOs): Tetrasphaera microorganisms are able to uptake aminoacids as carbon source, Accumulibacter uptake organic carbon (volatile fatty acids, VFA). In order to measure the removal of COD, phosphorus and nitrogen-derivate compounds, different analysis were performed: spectrophotometric measure of phosphorus, nitrate, nitrite and ammonia concentrations, TOC (Total Organic Carbon, measuring the carbon consumption), VFA via HPLC (High Performance Liquid Chromatography), total and volatile suspended solids following standard methods APHA, qualitative microorganism population via FISH (Fluorescence In Situ Hybridization). Batch test were also performed to monitor the NOx production. Both specialized populations accumulated as a result of SBR operations; however, Accumulibacter were found to uptake phosphates at higher extents. Both populations were able to remove efficiently nitrates and organic compounds occurring in the feeding. The experimental work was carried out at FCT of Universidade Nova de Lisboa (FCT-UNL) from February to July 2014.
Resumo:
The large production of immunoglobulin (Ig)A is energetically costly. The fact that evolution retained this apparent luxury of intestinal class switch recombination to IgA within the human population strongly indicates that there must be a critical specific function of IgA for survival of the species. The function of IgA has been investigated in a series of different models that will be discussed here. While IgA has clear protective functions against toxins or in the context of intestinal viral infections, the function of IgA specific for non-pathogenic commensal bacteria remains unclear. In the context of the current literature we present a hypothesis where secretory IgA integrates as an additional layer of immune function into the continuum of intestinal CD4 T cell responses, to achieve a mutualistic relationship between the intestinal commensal microbiota and the host.
Resumo:
BACKGROUND: Cystic fibrosis (CF) is associated with the appearance of serum autoantibodies directed against bactericidal/permeability-increasing protein (BPI). OBJECTIVES: To determine the age-specific seroprevalence rates of anti-BPI-IgG and IgA in a population of patients with CF and to correlate anti-BPI antibody concentrations with microbial respiratory tract colonization and pulmonary function variables at the time of serum sampling and 6 years thereafter. METHODS: Determination of BPI antibodies of the IgG and IgA isotypes using a commercial enzyme-linked immunosorbent assay in sera of a CF serum bank of 1992; correlation of anti-BPI antibody concentrations with age, clinical score, pulmonary function variables in 1992 and 1998, total serum immunoglobulin isotype concentrations and respiratory tract colonization with Pseudomonas aeruginosa and Aspergillus spp. RESULTS: Seventy-one patients (age in 1992, 14.1 +/- 7.5 years) were studied. Reactivities for anti-BPI-IgG and IgA were found in 28 (39%) and 26 (37%) patients, respectively. The seroprevalence of anti-BPI-IgA, but not IgG, increased significantly with age. P. aeruginosa colonization was associated with elevated concentrations of anti-BPI-IgG (P = 0.003) and IgA (P = 0.037). There were significant negative correlations between pulmonary function variables (vital capacity, forced expiratory volume in 1 s) in 1992 and 1998, respectively, and concentrations of anti-BPI-IgG or IgA in a multiple regression analysis. Anti-BPI-IgG, but not IgA, remained significantly associated with P. aeruginosa colonization (P = 0.006) and with reduced vital capacity (P = 0.01) in 1998 after correction for total serum isotype concentration. CONCLUSIONS: Anti-BPI-IgG are strongly associated with concurrent P. aeruginosa colonization and with long term restrictive pulmonary function abnormalities.
Resumo:
The antimicrobial activity of taurolidine was compared with minocycline against microbial species associated with periodontitis (four single strains and a 12-species mixture). Minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs), killing as well as activities on established and forming single-species biofilms and a 12-species biofilm were determined. The MICs of taurolidine against single species were always 0.31 mg/ml, the MBCs were 0.64 mg/ml. The used mixed microbiota was less sensitive to taurolidine, MIC and the MBC was 2.5 mg/ml. The strains and the mixture were completely killed by 2.5 mg/ml taurolidine, whereas 256 μg/ml minocycline reduced the bacterial counts of the mixture by 5 log10 colony forming units (cfu). Coating the surface with 10 mg/ml taurolidine or 256 μg/ml minocycline prevented completely biofilm formation of Porphyromonas gingivalis ATCC 33277 but not of Aggregatibacter actinomycetemcomitans Y4 and the mixture. On 4.5 d old biofilms, taurolidine acted concentration dependent with a reduction by 5 log10 cfu (P. gingivalis ATCC 33277) and 7 log10 cfu (A. actinomycetemcomitans Y4) when applying 10 mg/ml. Minocycline decreased the cfu counts by 1-2 log10 cfu independent of the used concentration. The reduction of the cfu counts in the 4.5 d old multi-species biofilms was about 3 log10 cfu after application of any minocycline concentration and after using 10 mg/ml taurolidine. Taurolidine is active against species associated with periodontitis, even within biofilms. Nevertheless a complete elimination of complex biofilms by taurolidine seems to be impossible and underlines the importance of a mechanical removal of biofilms prior to application of taurolidine.
Resumo:
Results of microbiological, biogeochemical and isotope geochemical studies in the Kara Sea are described. Samples for these studies were obtained during Cruise 54 of R/V Akademik Mstislav Keldysh in September 2007. The studied area covered the northern, central, and southwestern parts of the Kara Sea and the Obskaya Guba (Ob River estuary). Quantitative characteristics of total bacterial population and activity of microbial processes in the water column and bottom sediments were obtained. Total abundance of bacterioplankton (BP) varied from 250000 cells/ml in the northern Kara Sea to 3000000 cells/ml in the Obskaya Guba. BP abundance depended on concentration of suspensded matter. Net BP production was minimal in the central Kara Sea (up to 0.15-0.2 µg C/l/day) and maximal (0.5-0.75 µg C/l/day) in the Obskaya Guba. Organic material at the majority of stations at the Ob transect predominantly contained light carbon isotopes (-28.0 to -30.18 per mil) of terrigenous origin. Methane concentration in the surface water layer varied from 0.18 to 2.0 µl CH4/l, and methane oxidation rate varied from 0.1 to 100 nl CH4/l/day. Methane concentration in the upper sediment layer varied from 30 to 300 µl CH4/dm**3; rate of methane formation was varied from 44 to 500 nl CH4/dm**3/day and rate of methane oxidation - from 30 to 2000 nl CH4/dm**3/day. Rate of sulfate reduction varied from 4 to 184 µg S/dm**3/day.
Resumo:
Species of pathogenic microbes are composed of an array of evolutionarily distinct chromosomal genotypes characterized by diversity in gene content and sequence (allelic variation). The occurrence of substantial genetic diversity has hindered progress in developing a comprehensive understanding of the molecular basis of virulence and new therapeutics such as vaccines. To provide new information that bears on these issues, 11 genes encoding extracellular proteins in the human bacterial pathogen group A Streptococcus identified by analysis of four genomes were studied. Eight of the 11 genes encode proteins with a LPXTG(L) motif that covalently links Gram-positive virulence factors to the bacterial cell surface. Sequence analysis of the 11 genes in 37 geographically and phylogenetically diverse group A Streptococcus strains cultured from patients with different infection types found that recent horizontal gene transfer has contributed substantially to chromosomal diversity. Regions of the inferred proteins likely to interact with the host were identified by molecular population genetic analysis, and Western immunoblot analysis with sera from infected patients confirmed that they were antigenic. Real-time reverse transcriptase–PCR (TaqMan) assays found that transcription of six of the 11 genes was substantially up-regulated in the stationary phase. In addition, transcription of many genes was influenced by the covR and mga trans-acting gene regulatory loci. Multilocus investigation of putative virulence genes by the integrated approach described herein provides an important strategy to aid microbial pathogenesis research and rapidly identify new targets for therapeutics research.