889 resultados para Microarray Cancer Data
Resumo:
Prostate cancers form a heterogeneous group of diseases and there is a need for novel biomarkers, and for more efficient and targeted methods of treatment. In this thesis, the potential of microarray data, RNA interference (RNAi) and compound screens were utilized in order to identify novel biomarkers, drug targets and drugs for future personalized prostate cancer therapeutics. First, a bioinformatic mRNA expression analysis covering 9873 human tissue and cell samples, including 349 prostate cancer and 147 normal prostate samples, was used to distinguish in silico prevalidated putative prostate cancer biomarkers and drug targets. Second, RNAi based high-throughput (HT) functional profiling of 295 prostate and prostate cancer tissue specific genes was performed in cultured prostate cancer cells. Third, a HT compound screen approach using a library of 4910 drugs and drug-like molecules was exploited to identify potential drugs inhibiting prostate cancer cell growth. Nine candidate drug targets, with biomarker potential, and one cancer selective compound were validated in vitro and in vivo. In addition to androgen receptor (AR) signaling, endoplasmic reticulum (ER) function, arachidonic acid (AA) pathway, redox homeostasis and mitosis were identified as vital processes in prostate cancer cells. ERG oncogene positive cancer cells exhibited sensitivity to induction of oxidative and ER stress, whereas advanced and castrate-resistant prostate cancer (CRPC) could be potentially targeted through AR signaling and mitosis. In conclusion, this thesis illustrates the power of systems biological data analysis in the discovery of potential vulnerabilities present in prostate cancer cells, as well as novel options for personalized cancer management.
Resumo:
In development of human medicines, it is important to predict early and accurately enough the disease and patient population to be treated as well as the effective and safe dose range of the studied medicine. This is pursued by using preclinical research models, clinical pharmacology and early clinical studies with small sample sizes. When successful, this enables effective development of medicines and reduces unnecessary exposure of healthy subjects and patients to ineffectice or harmfull doses of experimental compounds. Toremifene is a selective estrogen receptor modulator (SERM) used for treatment of breast cancer. Its development was initiated in 1980s when selection of treatment indications and doses were based on research in cell and animal models and on noncomparative clinical studies including small number of patients. Since the early development phase, the treatment indication, the patient population and the dose range were confirmed in large comparative clinical studies in patients. Based on the currently available large and long term clinical study data the aim of this study was to investigate how the early phase studies were able to predict the treatment indication, patient population and the dose range of the SERM. As a conclusion and based on the estrogen receptor mediated mechanism of action early studies were able to predict the treatment indication, target patient population and a dose range to be studied in confirmatory clinical studies. However, comparative clinical studies are needed to optimize dose selection of the SERM in treatment of breast cancer.
Resumo:
Reports of uterine cancer deaths that do not specify the subsite of the tumor threaten the quality of the epidemiologic appraisal of corpus and cervix uteri cancer mortality. The present study assessed the impact of correcting the estimated corpus and cervix uteri cancer mortality in the city of São Paulo, Brazil. The epidemiologic assessment of death rates comprised the estimation of magnitudes, trends (1980-2003), and area-level distribution based on three strategies: i) using uncorrected death certificate information; ii) correcting estimates of corpus and cervix uteri mortality by fully reallocating unspecified deaths to either one of these categories, and iii) partially correcting specified estimates by maintaining as unspecified a fraction of deaths certified as due to cancer of "uterus not otherwise specified". The proportion of uterine cancer deaths without subsite specification decreased from 42.9% in 1984 to 20.8% in 2003. Partial and full corrections resulted in considerable increases of cervix (31.3 and 48.8%, respectively) and corpus uteri (34.4 and 55.2%) cancer mortality. Partial correction did not change trends for subsite-specific uterine cancer mortality, whereas full correction did, thus representing an early indication of decrease for cervical neoplasms and stability for tumors of the corpus uteri in this population. Ecologic correlations between mortality and socioeconomic indices were unchanged for both strategies of correcting estimates. Reallocating unspecified uterine cancer mortality in contexts with a high proportion of these deaths has a considerable impact on the epidemiologic profile of mortality and provides more reliable estimates of cervix and corpus uteri cancer death rates and trends.
Resumo:
Lung cancer leads cancer-related mortality worldwide. Non-small-cell lung cancer (NSCLC), the most prevalent subtype of this recalcitrant cancer, is usually diagnosed at advanced stages, and available systemic therapies are mostly palliative. The probing of the NSCLC kinome has identified numerous nonoverlapping driver genomic events, including epidermal growth factor receptor (EGFR) gene mutations. This review provides a synopsis of preclinical and clinical data on EGFR mutated NSCLC and EGFR tyrosine kinase inhibitors (TKIs). Classic somatic EGFR kinase domain mutations (such as L858R and exon 19 deletions) make tumors addicted to their signaling cascades and generate a therapeutic window for the use of ATP-mimetic EGFR TKIs. The latter inhibit these kinases and their downstream effectors, and induce apoptosis in preclinical models. The aforementioned EGFR mutations are stout predictors of response and augmentation of progression-free survival when gefitinib, erlotinib, and afatinib are used for patients with advanced NSCLC. The benefits associated with these EGFR TKIs are limited by the mechanisms of tumor resistance, such as the gatekeeper EGFR-T790M mutation, and bypass activation of signaling cascades. Ongoing preclinical efforts for treating resistance have started to translate into patient care (including clinical trials of the covalent EGFR-T790M TKIs AZD9291 and CO-1686) and hold promise to further boost the median survival of patients with EGFR mutated NSCLC.
Resumo:
The recent rapid development of biotechnological approaches has enabled the production of large whole genome level biological data sets. In order to handle thesedata sets, reliable and efficient automated tools and methods for data processingand result interpretation are required. Bioinformatics, as the field of studying andprocessing biological data, tries to answer this need by combining methods and approaches across computer science, statistics, mathematics and engineering to studyand process biological data. The need is also increasing for tools that can be used by the biological researchers themselves who may not have a strong statistical or computational background, which requires creating tools and pipelines with intuitive user interfaces, robust analysis workflows and strong emphasis on result reportingand visualization. Within this thesis, several data analysis tools and methods have been developed for analyzing high-throughput biological data sets. These approaches, coveringseveral aspects of high-throughput data analysis, are specifically aimed for gene expression and genotyping data although in principle they are suitable for analyzing other data types as well. Coherent handling of the data across the various data analysis steps is highly important in order to ensure robust and reliable results. Thus,robust data analysis workflows are also described, putting the developed tools andmethods into a wider context. The choice of the correct analysis method may also depend on the properties of the specific data setandthereforeguidelinesforchoosing an optimal method are given. The data analysis tools, methods and workflows developed within this thesis have been applied to several research studies, of which two representative examplesare included in the thesis. The first study focuses on spermatogenesis in murinetestis and the second one examines cell lineage specification in mouse embryonicstem cells.
Resumo:
En 2015, la récidive tumorale et les métastases du cancer du sein demeurent une cause importante de décès à travers le monde. Toutefois, ces cancers sont souvent hétérogènes car en dépit d’un phénotype similaire, l’évolution clinique et la réponse au traitement peuvent varier considérablement. Il y a donc un intérêt évident à identifier et à caractériser de nouveaux biomarqueurs pour permettre classer les tumeurs mammaires dans des sous-groupes plus homogènes. Notre hypothèse est que chaque cancer mammaire possède des caractéristiques distinctes au plan des altérations du génome et des profils d’expression géniques et que ces changements se traduisent cliniquement par une prédisposition à former des métastases ou à répondre ou non à la chimiothérapie et aux thérapies ciblées. Dans le cadre de nos travaux, nous nous sommes intéressés aux sous-types agressifs de tumeurs mammaires et notamment les cancers de type triple négatif. Nous avons aussi tenté d’identifier des marqueurs capables de distinguer l’une de l’autre les tumeurs de type luminal A et luminal B. Pour ce faire, nous avons d’abord utilisé une stratégie in silico à partir de données publiques (micro-puces d’ADN et séquençage de l’ARN). Nous avons ensuite construit sept micro-matrices tissulaires (TMA) provenant de tissus mammaires normaux et tumoraux fixés à la formaline et enrobés en paraffine. Ces outils nous ont permis d’évaluer par immunohistochimie les niveaux d’expression différentielle des marqueurs suivants : ANXA1, MMP-9, DP103 et MCM2. Ceux-ci ont été comparés aux marqueurs usuels du cancer du sein (ER, PR, HER2, CK5/6 et FOXA1) et corrélés aux données cliniques (survie globale et métastase). Nos résultats indiquent que ces nouveaux marqueurs jouent un rôle important dans l’évolution clinique défavorable des tumeurs de haut grade. Dans un premier article nous avons montré que l’expression d’ANXA1 est dérégulée dans les cancers de type triple-négatif et aussi, dans une certaine mesure, dans les tumeurs HER2+. Nous croyons qu’ANXA1 permet de mieux comprendre le processus d’hétérogénéité tumorale et facilite l’identification des tumeurs de haut grade. Nous proposons également qu’ d’ANXA1 stimule la transition épithélio-mésenchymateuse (EMT) et la formation des métastases. Dans un second temps, nous avons montré que les niveaux d’expression de MMP-9 reflètent la différenciation cellulaire et corrèlent avec les sous-types de cancers mammaires ayant un mauvais pronostic. Nous estimons que MMP-9 permet de mieux comprendre et d’identifier les tumeurs mammaires à haut risque. De fait, la surexpression de MMP-9 est associée à une augmentation des métastases, une récidive précoce et une diminution de la survie globale. Dans le cadre d’un troisième article, nous avons montré que la surexpression du marqueur de prolifération MCM2 s’observe dans les cancers triple-négatifs, HER2+ et Luminal B par comparaison aux cancers luminal A (p< 0.0001). Nos résultats suggèrent qu’en utilisant un seuil de 40% de noyaux marqués, nous pourrions distinguer l’une de l’autre les tumeurs de type luminal A et luminal B. Cela dit, avant de pouvoir envisager l’utilisation de ce marqueur en clinique, une étude de validation sur une nouvelle cohorte de patientes s’impose. En somme, les résultats de nos travaux suggèrent qu’ANXA1, MMP-9 et MCM2 sont des marqueurs intéressants pour mieux comprendre les mécanismes physiopathologiques impliqués dans la progression tumorale et le développement des métastases. À terme, ces nouveaux marqueurs pourraient être utilisés seuls ou en combinaison avec d’autres gènes candidats pour permettre le développement de trousses « multigènes » ou d’essais protéomiques multiplex pour prédire l’évolution clinique des cancers mammaires.
Resumo:
Le cancer de l’ovaire (COv) est le cancer gynécologique le plus létal chez la femme et les traitements existants, chirurgie et chimiothérapie, ont peu évolué au cours des dernières décennies. Nous proposons que la compréhension des différents destins cellulaires tels que la sénescence que peuvent choisir les cellules du cancer de l’ovaire en réponse à la chimiothérapie pourrait conduire à de nouvelles opportunités thérapeutiques. La sénescence cellulaire a été largement associée à l’activité de la protéine TP53, qui est mutée dans plus de 90% des cas de cancer de l’ovaire séreux de haut grade (COv-SHG), la forme la plus commune de la maladie. Dans nos travaux, à partir d’échantillons dérivés de patientes, nous montrons que les cultures primaires du cancer de l’ovaire séreux de haut grade exposées au stress ou à des drogues utilisées en chimiothérapie entrent en senescence grâce à l’activité d’un isoforme du gène CDKN2A (p16INK4A). Dans ces cellules, nous avons évalué les caractéristiques fondamentales de la sénescence cellulaire tels que les altérations morphologiques, l’activité béta galactosidase associée à la sénescence, les dommages à l’ADN, l’arrêt du cycle cellulaire et le phénotype sécrétoire associé à la sénescence. En utilisant des micromatrices tissulaires construites à partir d’échantillons humains de COv-SHG pré- et post-chimiothérapie, accompagnées de leurs données cliniques, nous avons quantifié des marqueurs de sénescence incluant une diminution de la prolifération cellulaire quelques semaines après chimiothérapie. De façon intéressante, l’expression de p16INK4A dans les échantillons de COv-SHG prétraitement corrèle avec une survie prolongée des patientes suite au traitement. Ceci suggère ainsi pour la première fois un impact biologique bénéfique pour la présence de cellules cancéreuses qui sont capable d’activer la sénescence, particulièrement pour le traitement du cancer de l’ovaire. Dans le but de complémenter les thérapies actuelles avec des approches de manipulation pharmacologique de la sénescence, nos résultats suggèrent qu’il serait important de déterminer l’impact positif ou négatif de la sénescence induite par la thérapie sur la progression de la maladie et la survie, pour chaque type de cancer de façon indépendante.
Resumo:
During the last part of the 1990s the chance of surviving breast cancer increased. Changes in survival functions reflect a mixture of effects. Both, the introduction of adjuvant treatments and early screening with mammography played a role in the decline in mortality. Evaluating the contribution of these interventions using mathematical models requires survival functions before and after their introduction. Furthermore, required survival functions may be different by age groups and are related to disease stage at diagnosis. Sometimes detailed information is not available, as was the case for the region of Catalonia (Spain). Then one may derive the functions using information from other geographical areas. This work presents the methodology used to estimate age- and stage-specific Catalan breast cancer survival functions from scarce Catalan survival data by adapting the age- and stage-specific US functions. Methods: Cubic splines were used to smooth data and obtain continuous hazard rate functions. After, we fitted a Poisson model to derive hazard ratios. The model included time as a covariate. Then the hazard ratios were applied to US survival functions detailed by age and stage to obtain Catalan estimations. Results: We started estimating the hazard ratios for Catalonia versus the USA before and after the introduction of screening. The hazard ratios were then multiplied by the age- and stage-specific breast cancer hazard rates from the USA to obtain the Catalan hazard rates. We also compared breast cancer survival in Catalonia and the USA in two time periods, before cancer control interventions (USA 1975–79, Catalonia 1980–89) and after (USA and Catalonia 1990–2001). Survival in Catalonia in the 1980–89 period was worse than in the USA during 1975–79, but the differences disappeared in 1990–2001. Conclusion: Our results suggest that access to better treatments and quality of care contributed to large improvements in survival in Catalonia. On the other hand, we obtained detailed breast cancer survival functions that will be used for modeling the effect of screening and adjuvant treatments in Catalonia
Resumo:
Objective: To determine the risk of lung cancer associated with exposure at home to the radioactive disintegration products of naturally Occurring radon gas. Design: Collaborative analysis of individual data from 13 case-control studies of residential radon and lung cancer. Setting Nine European countries. Subjects 7148 cases Of lung cancer and 14 208 controls. Main outcome measures: Relative risks of lung cancer and radon gas concentrations in homes inhabited during the previous 5-34 years measured in becquerels (radon disintegrations per second) per cubic incite (Bq/m(3)) Of household air. Results: The mean measured radon concentration in homes of people in tire control group was 97 Bq/m(3), with 11% measuring > 200 and 4% measuring > 400 Bq/m(3). For cases of lung cancer the mean concentration was 104 Bq/m(3). The risk of lung cancer increased by 8.4% (95% confidence interval 3.0% to 15.8%) per 100 Bq/m(3) increase in measured radon (P = 0.0007). This corresponds to an increase of 16% (5% to 31%) per 100 Bq/m(3) increase in usual radon-that is, after correction for the dilution caused by random uncertainties in measuring radon concentrations. The dose-response relation seemed to be linear with no threshold and remained significant (P=0.04) in analyses limited to individuals from homes with measured radon < 200 Bq/m(3). The proportionate excess risk did not differ significantly with study, age, sex, or smoking. In the absence of other causes of death, the absolute risks of lung cancer by age 75 years at usual radon concentrations of 0, 100, and 400 Bq/m(3) would be about 0.4%, 0.5%, and 0.7%, respectively, for lifelong non-smokers, and about 25 times greater (10%, 12%, and 16%) for cigarette smokers. Conclusions: Collectively, though not separately, these studies show appreciable hazards from residential radon, particularly for smokers and recent ex-smokers, and indicate that it is responsible for about 2% of all deaths from cancer in Europe.
Resumo:
Background: Microarray based comparative genomic hybridisation (CGH) experiments have been used to study numerous biological problems including understanding genome plasticity in pathogenic bacteria. Typically such experiments produce large data sets that are difficult for biologists to handle. Although there are some programmes available for interpretation of bacterial transcriptomics data and CGH microarray data for looking at genetic stability in oncogenes, there are none specifically to understand the mosaic nature of bacterial genomes. Consequently a bottle neck still persists in accurate processing and mathematical analysis of these data. To address this shortfall we have produced a simple and robust CGH microarray data analysis process that may be automated in the future to understand bacterial genomic diversity. Results: The process involves five steps: cleaning, normalisation, estimating gene presence and absence or divergence, validation, and analysis of data from test against three reference strains simultaneously. Each stage of the process is described and we have compared a number of methods available for characterising bacterial genomic diversity, for calculating the cut-off between gene presence and absence or divergence, and shown that a simple dynamic approach using a kernel density estimator performed better than both established, as well as a more sophisticated mixture modelling technique. We have also shown that current methods commonly used for CGH microarray analysis in tumour and cancer cell lines are not appropriate for analysing our data. Conclusion: After carrying out the analysis and validation for three sequenced Escherichia coli strains, CGH microarray data from 19 E. coli O157 pathogenic test strains were used to demonstrate the benefits of applying this simple and robust process to CGH microarray studies using bacterial genomes.
Resumo:
A framework for understanding the complexity of cancer development was established by Hanahan and Weinberg in their definition of the hallmarks of cancer. In this review, we consider the evidence that parabens can enable development in human breast epithelial cells of 4/6 of the basic hallmarks, 1/2 of the emerging hallmarks and 1/2 of the enabling characteristics. Hallmark 1: parabens have been measured as present in 99% of human breast tissue samples, possess oestrogenic activity and can stimulate sustained proliferation of human breast cancer cells at concentrations measurable in the breast. Hallmark 2: parabens can inhibit the suppression of breast cancer cell growth by hydroxytamoxifen, and through binding to the oestrogen-related receptor gamma (ERR) may prevent its deactivation by growth inhibitors. Hallmark 3: in the 10nM to 1M range, parabens give a dose-dependent evasion of apoptosis in high-risk donor breast epithelial cells. Hallmark 4: long-term exposure (>20weeks) to parabens leads to increased migratory and invasive activity in human breast cancer cells, properties which are linked to the metastatic process. Emerging hallmark: methylparaben has been shown in human breast epithelial cells to increase mTOR, a key regulator of energy metabolism. Enabling characteristic: parabens can cause DNA damage at high concentrations in the short term but more work is needed to investigate long-term low-doses of mixtures. The ability of parabens to enable multiple cancer hallmarks in human breast epithelial cells provides grounds for regulatory review of the implications of the presence of parabens in human breast tissue.
Resumo:
In this paper, we present an algorithm for cluster analysis that integrates aspects from cluster ensemble and multi-objective clustering. The algorithm is based on a Pareto-based multi-objective genetic algorithm, with a special crossover operator, which uses clustering validation measures as objective functions. The algorithm proposed can deal with data sets presenting different types of clusters, without the need of expertise in cluster analysis. its result is a concise set of partitions representing alternative trade-offs among the objective functions. We compare the results obtained with our algorithm, in the context of gene expression data sets, to those achieved with multi-objective Clustering with automatic K-determination (MOCK). the algorithm most closely related to ours. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The excision repair cross-complementation 1 (ERCC1) enzyme plays an essential role in the nucleotide excision repair pathway and is associated with resistance to platinum-based chemotherapy in different types of cancer. The aim of the present study was to evaluate the clinicopathological significance of ERCC1 expression in breast cancer patients. We analyzed the immunohistochemical expression of ERCC1 in a tissue microarray from 135 primary breast carcinomas and correlated the immunohistochemical findings with clinicopathological factors and outcome data. ERCC1 expression analysis was available for 109 cases. In this group, 58 (53.2%) were positive for ERCC1. ERCC1-positive expression was correlated with smaller tumor size (P=0.007) and with positivity for estrogen receptor (P=0.040), but no correlation was found with other clinicopathological features. Although not statistically significant, triple negative breast cancers were more frequently negative for ERCC1 (61.5% of the cases) compared to the non-triple negative breast cancer cases (41.5%). In conclusion, ERCC1 expression correlated significantly with favorable prognostic factors, such as smaller tumor size and ER-positivity, suggesting a possible role for ERCC1 as a predictive and/or prognostic marker in breast cancer. © 2013 Elsevier GmbH.
Resumo:
Introduction: The widespread screening programs prompted a decrease in prostate cancer stage at diagnosis, and active surveillance is an option for patients who may harbor clinically insignificant prostate cancer (IPC). Pathologists include the possibility of an IPC in their reports based on the Gleason score and tumor volume. This study determined the accuracy of pathological data in the identification of IPC in radical prostatectomy (RP) specimens. Materials and Methods: Of 592 radical prostatectomy specimens examined in our laboratory from 2001 to 2010, 20 patients harbored IPC and exhibited biopsy findings suggestive of IPC. These biopsy features served as the criteria to define patients with potentially insignificant tumor in this population. The results of the prostate biopsies and surgical specimens of the 592 patients were compared. Results: The twenty patients who had IPC in both biopsy and RP were considered real positive cases. All patients were divided into groups based on their diagnoses following RP: true positives (n = 20), false positives (n = 149), true negatives (n = 421), false negatives (n = 2). The accuracy of the pathological data alone for the prediction of IPC was 91.4%, the sensitivity was 91% and the specificity was 74%. Conclusion: The identification of IPC using pathological data exclusively is accurate, and pathologists should suggest this in their reports to aid surgeons, urologists and radiotherapists to decide the best treatment for their patients.