951 resultados para Metal ions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A silica surface chemically modified with [3-(2,2'-dipyridylamine) propyl] groups was prepared, characterized, and evaluated for its metal ion preconcentration in fuel ethanol. To our knowledge, we are the first authors who have reported the present modification on silica gel surface. The material was characterized using infrared spectra, scanning electronic microscopy, and 13C and 29Si solid-state NMR spectra. Batch and column experiments were conducted to investigate for metal ion removal from fuel ethanol. The results showed that the Langmuir model describes the sorption equilibrium data of the metal ions in a satisfactory way. From the Langmuir isotherms, the following maximum adsorption capacities (in mmolg -1) were determined: 1.81 for Fe(III), 1.75 for Cr(III), 1.30 for Cu(II), 1.25 for Co(II), 1.15 for Pb(II), 0.95 for Ni(II), and 0.87 for Zn(II). Thermodynamic functions, the change of free energy (ΔG), enthalpy (ΔH), and entropy (ΔS) showed that the adsorption of metal ions onto Si-Pr-DPA was feasible, spontaneous, and endothermic. The sorption-desorption of the metal ions made possible the development of a preconcentration and quantification method of metal ions in fuel ethanol. © 2012 Elsevier Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this research was the preparation of a silsesquioxane functionalized with eight chloropropyl chains (T8-PrCl) and of a new derivative functionalized with a pendant linear chain (2-amino-1,3,4-thiadiazole - ATD; T8-Pr-ATD). The two nanostructured materials were characterized by 13C and 29Si NMR, FTIR and elemental analysis. The new nanostructured material, octakis[3-(2-amino-1,3,4-thiadiazole)propyl] octasilsesquioxane (T8-Pr-ATD), was tested as a ligand for transition-metal ions with a special attention to adsorption isotherms. The adsorption was performed using a batchwise process and the organofunctionalized surface showed the ability to adsorb the metal ions Cu (II), Co (II), and Ni (II) from water and ethanol. The adsorption isotherms were fitted by Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (D-R) model. The kinetics of adsorption of metals were performed using three models such as pseudo-first order, pseudo-second order and Elovich. The Langmuir and Elovich models were the most appropriate to describe the adsorption and kinetic data, respectively. Furthermore, the T8-Pr-ATD was successfully applied to the analysis of environmental samples (river and sea water). Subsequently, a new nanomaterial was prepared by functionalization of the T8-Pr-ATD with a Mo (II) organometallic complex (T8-Pr-ATD-Mo). Only a few works in the literature have reported this type of substitution, and none dealt with ATD and Mo (II) complexes. The new Mo-silsesquioxane organometallic nanomaterial was tested as precursor in the epoxidation of cyclooctene and styrene. © 2012 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synthesis, characterization and thermal decomposition of bivalent transition metal α-hydroxyisobutyrates, M(C4H7O 3)2·nH2O (M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II)), as well as the thermal behaviour of α-hydroxyisobutyric acid and its sodium salt were investigated employing simultaneous thermogravimetry and differential scanning calorimetry (TG-DSC), infrared spectroscopy (FTIR), TG-DSC coupled to FTIR, elemental analysis and complexometry. All the compounds were obtained as dihydrated, except the copper one which was obtained in the anhydrous state. The thermal decomposition of the anhydrous compounds occurs in a single or two steps and the final residue up to 235 C (Mn), 300 C (Fe), 305 C (Co), 490 C (Ni), 260 C (Cu) and 430 C (Zn) is Mn2O3, Fe2O3, Co3O 4, NiO, CuO and ZnO, respectively. The results also provided information concerning the ligand's denticity and identification of the gaseous products evolved during the thermal decomposition of these compounds. Copyright © 2013 Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes the synthesis and characterization of a new octakis[3-(2,2'-dipyridylamine)propyl]octasilsesquioxane (T8-Pr-DPA), and a study of the metal ion preconcentration in fuel ethanol. Batch and column experiments were conducted to investigate for the removal of heavy metal ions from fuel ethanol. The results showed that the Langmuir allowed to describe the sorption equilibrium data of the metal ions on T8-Pr-DPA in a satisfactory way. The following maximum adsorption capacities (in mmolg-1) were determined: 3.62 for Fe (III), 3.32 for Cr (III), 2.15 for Cu (II), 1.80 for Co (II), 1.62 for Pb (II), 1.32 for Ni (II) and 0.88 for Zn (II). The thermodynamic parameters for the adsorption process such as free energy of adsorption (δG), enthalpy of adsorption (δH) and entropy of adsorption (δS) were calculated. Thermodynamic parameters showed that the system has favorable enthalpic, Gibbs free energy, and entropic values. The sorption-desorption of the metal ions has made possible the development of a preconcentration and determination method of metal ions at trace level in fuel ethanol. The method of quantitative analysis for Fe, Cu, Ni and Zn in fuel ethanol by Flame AAS was validated. Several parameters have been taken into account and evaluated for the validation of method, namely: linearity, limit of detection, limit of quantification, and the relative standard deviation and accuracy. The accuracy of the method was assessed by testing analyte recovery in the fuel ethanol samples. © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, it was demonstrated that β-galactosidase can be deactivated and reactivated with EDTA and divalent metal ions. The enzyme was deactivated after 20 minutes in EDTA solution. Maximal deactivation at the lowest EDTA concentration (10-3 mol.L-1) occurred in the presence of Tris-HCl buffer (pH 7.0). The enzyme recovered 50% of its initial activity after 10 minutes at Mg2+concentrations higher than 0.1 mmol.L-1. Experimental concentrations of 0.1 mmol.L-1 Mn2+ and 1.0 mmol.L-1 Co2+ were sufficient to reactivate the enzyme to around 300% of the control activity for the Mn2+ ion and nearly 100% for the Co2+ ion. The enzyme gradually lost its activity when the Co2+ concentration was 10-2 mol.L-1. Ni2+ and Zn2+ were unable to restore the catalytic activity. Km app and Vmax app were 1.95 ± 0.05 mmol.L-1 and 5.40 ± 0.86x10-2 mmol.min-1.mg-1, with o-NPG as substrate. Optimal temperature and pH were 34oC and 7.5. The half-life (t1/2) at 30°C was 17.5 min for the holoenzyme and 11.0 min for the apoenzyme. With respect to pH variation, the apoenzyme proved to be more sensitive than the holoenzyme. Keywords: β-galactosidase. Divalent metallic ions. Enzyme activity. Stability. RESUMO Efeito de íons metálicos divalentes na atividade e estabilidade da β-galactosidase isolada de Kluyveromyces lactis Este estudo demonstra como a β-galactosidase pode ser desativada e reativada usando EDTA e íons metálicos divalentes. A enzima foi desativada após 20 minutos na presença de EDTA. Desativação máxima para a menor concentração de EDTA (10-3 mol.L-1) ocorreu na presença do tampão Tris-HCl. A enzima recuperou 50% de sua atividade inicial após 10 minutos na presença de Mg2+ em concentrações superiores a 0,1mmol.L-1. Concentrações de 10-4 e 10-3mol.L-1 de Mn2+ e Co2+ foram suficientes para reativar a enzima em 300% comparado ao controle de íons Mn2+ e aproximadamente 100% para íons Co2+. A enzima perdeu gradualmente a sua atividade quando a concentração foi de 10-2 mol.L-1. Ni2+ e Zn2+ foram incapazes de restabelecer a atividade catalítica. Km app e Vmax app foram 1,95 ± 0,05 mmol.L-1 e 5,40 ± 0,86 x 10-2 mmol.min-1.mg-1. A temperatura e pH ótimos foram 34ºC e 7,5. A meia vida da holoenzima foi de 17,5 min a 30ºC e para a apoenzima foi de 11,0 min a 30ºC. Quanto à variação de pH, a apoenzima provou ser mais sensível que a holoenzima. Palavras-chave: β-galactosidase. Íons metálicos divalentes. Atividade enzimática. Estabilidade.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The deposition of Cu2+ and Zn2+ from aqueous solution has been investigated by a combination of classical molecular dynamics, density functional theory, and a theory developed by the authors. For both cases, the reaction proceeds through two one-electron steps. The monovalent ions can get close to the electrode surface without losing hydration energy, while the divalent ions, which have a stronger solvation sheath, cannot. The 4s orbital of Cu interacts strongly with the sp band and more weakly with the d band of the copper surface, while the Zn4s orbital couples only to the sp band of Zn. At the equilibrium potential for the overall reaction, the energy of the intermediate Cu+ ion is only a little higher than that of the divalent ion, so that the first electron transfer can occur in an outer-sphere mode. In contrast, the energy of the Zn+ ion lies too high for a simple outer-sphere reaction to be favorable; in accord with experimental data this suggests that this step is affected by anions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid-state M-2-MeO-BP compounds, where M represents bivalent Mn, Fe, Co, Ni, Cu, Zn and 2-MeO-BP is 2-methoxybenzylidenepyruvate have been synthesized. Simultaneous thermogravinietry-differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, infrared spectroscopy, elemental analysis and complexometry were used to characterize and to study the thermal stability and thermal decomposition of these compounds. The results led to information about the composition, dehydration, crystallinity and thermal decomposition of the isolated compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although nickel is a toxic metal for living organisms in its soluble form, its importance in many biological processes recently emerged. In this view, the investigation of the nickel-dependent enzymes urease and [NiFe]-hydrogenase, especially the mechanism of nickel insertion into their active sites, represent two intriguing case studies to understand other analogous systems and therefore to lead to a comprehension of the nickel trafficking inside the cell. Moreover, these two enzymes have been demonstrated to ensure survival and colonization of the human pathogen H. pylori, the only known microorganism able to proliferate in the gastric niche. The right nickel delivering into the urease active site requires the presence of at least four accessory proteins, UreD, UreE, UreF and UreG. Similarly, analogous process is principally mediated by HypA and HypB proteins in the [NiFe]-hydrogenase system. Indeed, HpHypA and HpHypB also have been proposed to act in the activation of the urease enzyme from H. pylori, probably mobilizing nickel ions from HpHypA to the HpUreE-HpUreG complex. A complete comprehension of the interaction mechanism between the accessory proteins and the crosstalk between urease and hydrogenase accessory systems requires the determination of the role of each protein chaperone that strictly depends on their structural and biochemical properties. The availability of HpUreE, HpUreG and HpHypA proteins in a pure form is a pre-requisite to perform all the subsequent protein characterizations, thus their purification was the first aim of this work. Subsequently, the structural and biochemical properties of HpUreE were investigated using multi-angle and quasi-elastic light scattering, as well as NMR and circular dichroism spectroscopy. The thermodynamic parameters of Ni2+ and Zn2+ binding to HpUreE were principally established using isothermal titration calorimetry and the importance of key histidine residues in the process of binding metal ions was studied using site-directed mutagenesis. The molecular details of the HpUreE-HpUreG and HpUreE-HpHypA protein-protein assemblies were also elucidated. The interaction between HpUreE and HpUreG was investigated using ITC and NMR spectroscopy, and the influence of Ni2+ and Zn2+ metal ions on the stabilization of this association was established using native gel electrophoresis, light scattering and thermal denaturation scanning followed by CD spectroscopy. Preliminary HpUreE-HpHypA interaction studies were conducted using ITC. Finally, the possible structural architectures of the two protein-protein assemblies were rationalized using homology modeling and docking computational approaches. All the obtained data were interpreted in order to achieve a more exhaustive picture of the urease activation process, and the correlation with the accessory system of the hydrogenase enzyme, considering the specific role and activity of the involved protein players. A possible function for Zn2+ in the chaperone network involved in Ni2+ trafficking and urease activation is also envisaged.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metal ions are critical for catalysis by many RNA and protein enzymes. To understand how these enzymes use metal ions for catalysis, it is crucial to determine how many metal ions are positioned at the active site. We report here an approach, combining atomic mutagenesis with quantitative determination of metal ion affinities, that allows individual metal ions to be distinguished. Using this approach, we show that at the active site of the Tetrahymena group I ribozyme the previously identified metal ion interactions with three substrate atoms, the 3′-oxygen of the oligonucleotide substrate and the 3′- and 2′-moieties of the guanosine nucleophile, are mediated by three distinct metal ions. This approach provides a general tool for distinguishing active site metal ions and allows the properties and roles of individual metal ions to be probed, even within the sea of metal ions bound to RNA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The observation of light metal ions in nucleic acids crystals is generally a fortuitous event. Sodium ions in particular are notoriously difficult to detect because their X-ray scattering contributions are virtually identical to those of water and Na+…O distances are only slightly shorter than strong hydrogen bonds between well-ordered water molecules. We demonstrate here that replacement of Na+ by K+, Rb+ or Cs+ and precise measurements of anomalous differences in intensities provide a particularly sensitive method for detecting alkali metal ion-binding sites in nucleic acid crystals. Not only can alkali metal ions be readily located in such structures, but the presence of Rb+ or Cs+ also allows structure determination by the single wavelength anomalous diffraction technique. Besides allowing identification of high occupancy binding sites, the combination of high resolution and anomalous diffraction data established here can also pinpoint binding sites that feature only partial occupancy. Conversely, high resolution of the data alone does not necessarily allow differentiation between water and partially ordered metal ions, as demonstrated with the crystal structure of a DNA duplex determined to a resolution of 0.6 Å.