930 resultados para Metal Oxides as Heterogeneous Catalysts


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A completely automated temperature-programmed reaction (TPR) system for carrying out gas-solid catalytic reactions under atmospheric flow conditions is fabricated to study CO and hydrocarbon oxidation, and NO reduction. The system consists of an all-stainless steel UHV system, quadrupole mass spectrometer SX200 (VG Scientific), a tubular furnace and micro-reactor, a temperature controller, a versatile gas handling system, and a data acquisition and analysis system. The performance of the system has been tested under standard experimental conditions for CO oxidation over well-characterized Ce1-x-y(La/Y)(y)O2-delta catalysts. Testing of 3-way catalysis with CO, NO and C2H2 to convert to CO2, N-2 and H2O is done with this catalyst which shows complete removal of pollutants below 325 degrees C. Fixed oxide-ion defects in Pt substituted Ce1-y(La/Y)(y)O2-y/2 show higher catalytic activity than Pt ion-substituted CeO2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this report, the issue related to nanoparticle (NP) agglomeration upon increasing their loading amount into metal-organic frameworks (MOFs) has been addressed by functionalization of MOFs with alkyne groups. The alkynophilicity of the Pd2+ (or other noble metals) ions has been utilized successfully for significant loading of Pd NPs into alkyne functionalized MOFs. It has been shown here that the size and loading amount of Pd NPs are highly dependent on the surface area and pore width of the MOFs. The loading amount of Pd NPs was increased monotonically without altering their size distribution on a particular MOF. Importantly, the distinct role of alkyne groups for Pe(2+) stabilization has also been demonstrated by performing a control experiment considering a MOF without an alkyne moiety. The preparation of NPs involved two distinct steps viz. adsorption of metal ions inside MOFs and reduction of metal ions. Both of these steps were monitored by microscopic techniques. This report also demonstrates the applicability of Pd@MOF NPs as extremely efficient heterogeneous catalysts for Heck-coupling and hydrogenation reactions of aryl bromides or iodides and alkenes, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Autothermal reforming of methanol for hydrogen production was investigated over ZnO-ZnCr2O4 supported on a series of metal oxides (Al2O3, CeO2, ZrO2 and CeO2-ZrO2)CeO2-ZrO2 mixed oxides with Ce /Zr molar ratio of 4/1 was found to be the optimal support which showed significant effect on the catalytic activity and selectivity. The ZnO-ZnCr2O4/CeO2-ZrO2 and ZnO-ZnCr2O4 catalysts were characterized by XRD, TEM, H-2-TPR and XPS. The results show that CeO2-ZrO2 mixed oxides have significant effect on the catalytic performance and the supported catalyst shows more uniform temperature distribution in the catalyst bed which was mainly due to its reasonable redox properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Superconductor mixed oxides were often used as catalysts at higher temperature in gas phase oxidations, and considered not suitable for lower temperature reactions in the liquid-solid phase; here the catalysis of YBa2Cu3O7+/-x and Y2BaCuO5+/-x in the phenol hydroxylation at lower temperature with H2O2 as oxygen donor was studied, and found that the superconductor YBa2Cu3O7+/-x, has no catalytic activity for phenol hydroxylation, but Y2BaCuO5+/-x does, even has better catalytic activity and stability than most previously reported ones. With the studies of catalysis of other simple metal oxides and perovskite-like mixed oxides, a radical substitution mechanism is proposed and the experimental facts are explained clearly, and draw a conclusion that the perovskite-like mixed oxides with (AO)(ABO(3)) and (AO)2(ABO(3)) structure have better catalytic activity than the simple perovskite oxides with (ABO(3))(3) structure alone, and (AO) structure unit is the key for the mixed oxides to have the phenol hydroxylation activity. No pollution of this process is very important for its further industrial application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrodeposition of metals onto conductive supports such as graphite potentially provides a lower-waste method to form heterogeneous catalysts than the standard methods such as wet impregnation. Copper electrodeposition onto pressed graphite disc electrodes was investigated from aqueous CuSO4-ethylenediamine solutions by chronoamperometry with scanning electron microscopy used to ascertain the particle sizes obtained by this method. The particle size was studied as a function of pH, CuSO4-ethylenediamine concentration, and electrodeposition time. It was observed that decreasing the pH, copper-ethylenediamine concentration and time each decreased the size of the copper particles observed, with the smallest obtained being around 5-20 nm. Furthermore, electroless aerobic oxidation of copper metal in the presence of ethylenediamine was successfully coupled with the electrodeposition in the same vessel. In this way, deposition was achieved sequentially on up to twenty different graphite discs using the same ethylenediamine solution, demonstrating the recyclability of the ligand. The materials thus prepared were shown to be catalytically active for the mineralisation of phenol by hydrogen peroxide. Overall, the results provide a proof-of-principle that by making use of aerobic oxidation coupled with electrochemical deposition, elemental base metals can be used directly as starting materials to form heterogeneous catalysts without the need to use metal salts as catalyst precursors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although many gold heterogeneous catalysts have been shown to exhibit significant activity and high selectivity for a wide range of reactions in both the liquid and gas phases, they are prone to irreversible deactivation. This is often associated with sintering or loss of the interaction of the gold with the support. Herein, we report on the use of methyl iodide as a method of dispersing gold nanoparticles supported on silica, titania, and alumina supports. In the case of titania- and alumina-based catalysts, the gold was transformed from nanometer particles into small clusters and some atomically dispersed gold. In contrast, although there was a drop in the gold particle size on the silica support following CH3I treatment, the size remained in the submicrometer range. The structural changes were correlated with changes in the selectivity and activity for ethanol dehydration and benzyl alcohol oxidation. From these observations, it is clear that this treatment provides a method by which deactivated gold catalysts can be reactivated via redispersion of the gold.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding and then designing efficient catalysts for CO oxidation at low temperature is one of the hottest topics in heterogeneous catalysis. Among the existing catalysts. Co3O4 is one of the most interesting systems: Morphology-controlled Co3O4 exhibits exceedingly high activity. In this study, by virtue of extensive density functional theory (OFT) calculations, the favored reaction mechanism in the system is identified. Through careful analyses on the energetics of elementary reactions on Co3O4(1 1 0)-A, Co3O4(1 1 0)-B, Co3O4(1 1 1) and Co3O4(1 0 0), which are the commonly exposed surfaces of Co3O4, we find the following regarding the relation between the activity and structure: (i) Co3+ is the active site rather than Co2+: and (ii) the three-coordinated surface oxygen bonded with three Co3+ may be slightly more reactive than the other two kinds of lattice oxygen, that is, the two-coordinated 0 bonded with one Co2+ and one Co3+ and the three-coordinated 0 bonded with one Co2+ and two Co3+. Following the results from Co3O4, we also extend the investigation to MnO2(1 1 0), Fe3O4(1 1 0), CuO(1 1 0) and CuO(1 1 1), which are the common metal oxide surfaces, aiming to understand the oxides in general. Three properties, such as the CO adsorption strength, the barrier of CO reacting with lattice 0 and the redox capacity, are identified to be the determining factors that can significantly affect the activity of oxides. Among these oxides, Co3O4 is found to be the most active one, stratifying all the three requirements. A new scheme to decompose barriers is introduced to understand the activity difference between lattice O-3c and O-2c on (1 1 0)-B surface. By utilizing the scheme, we demonstrate that the origin of activity variance lies in the geometric structures. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Titania is a versatile metal oxide with multiple applications. Titania supported catalysts are reported to be much more active compared to conventional silica or alumina supported ones in some reactions. TiO2 (anatase) having high surface area, with better crystallinity and high onset temperature of rutilation can be prepared by thermal hydrolysis of titanyl sulfate solution under controlled conditions. Calcinations at 350oC for 6 hrs were necessary to crystallize anatase. Method of preparation and percentage of the loaded metal oxides have greater influence on surface area. Drastic decrease in surface area was observed upon rutilation. Rutilation started at different temperatures depending on the metal oxide and the method of preparation. TiO2 should be characterized with high surface area, phase purity and high onset temperature of rutilation.Which should be well above the optimum temperature of a designated reaction in which it is employed as a catalyst. Variation in physical properties, depending upon the method of preparation is greater in TiO2 supported catalysts. Methanation activity was found to be highly dependent on nickel concentration present on the surface of the pellets. The methanation activity is strongly influenced by support material. The rate and turn over frequency of methanation and toluene oxidation activity of these catalysts are also equally important from an industrial point of view.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electron-donor properties of Sm2O3 activated at 300, 500, and 800°C are reported from studies on the adsorption of electron acceptors of various electron affinities (electron affinity values in eV are given in parentheses): 7,7,8,8-tetracyanoquino-dimethane (2.84), 2,3,5,6-tetrachloro-1,4-benzoquinone (2.40), p-dinitrobenzene (1.77), and m-dinitrobenzene (1.26) in acetonitrile and 1,4-dioxane. The extent of electron transfer during the adsorption was determined from magnetic measurements. The acid-base properties of Sm2O3 at different activation temperatures are reported using a set of Hammett indicators. Electron donor-acceptor interactions at interfaces are important in elucidating the adhesion forces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present thesis has described the development of some heterogeneous catalysts based on polymer supported dendrimers. Attachment of dendrimers to crosslinked polymer produced new catalysts with combined benefits of both dendrimers and heterogeneous catalysts. These were used as heterogeneous catalysts in selected reactions. All possible attempts were taken to avoid halogenated and aromatic solvents and toxic reagents. In short the present work has dealt with development of environmental friendly catalysts based on dendrimers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scientists throughout the world are in search of a better methodology to reduce the use of environmentally hazardous chemicals common in industries .A significant contribution in this field is given by different redox catalysts in oxidation reactions. The oxidation of organic substrates represents one of the most important industrial chemical reactions, explaining the significant efforts invested in the research and development of new heterogeneous catalysts with increased activities and selectivities in these type reactions[l-4|. Hence liquid phase reactions like epoxidation of cylcohexene and hydroxylation of phenol were carried out with a new outlook in the challenge using CeO2/TiO;; and CuO/TiO2 catalysts denoted as TiO2-Ce as TiO2-Cu respectively in this work. Also different wt% of metals incorporated titania catalysts like 3, 6, 9 wt% CeO2/TiO; and CuO/TiO;were subjected to the present study .The interaction between metal oxides and the oxide supports have attracted much attention because of the wide applications of supported metal oxide systems[7,8]. It is well known that supported oxides of transition metals are widely used as catalysts for various reactions. Titania as well its metal modified catalysts systems afford high activity and selectivity in the liquid phase epoxidation of cyclohexene[9]. Cyclohexene epoxide is obtained as the major product during the reaction with small amounts of allylic substitution products.This chapter gives an idea about the liquid phase oxidation reactions like epoxidation of cylcohexene and hydroxylation of phenol in which many industrially important products are formed. Here discusses about the redox properties of the ceria and copper incorporated titania catalysts.The epoxidation of cyclohcxene is carried out efficiently over the prepared systems with the selective formation of cyclohexane epoxide. This reaction hints that it might be possible to create cleaner nylon chemistry. The total acidity of the prepared systems plays an important role in determining the catalytic activity in the dehydrogenation of cyclohexane and cyclohexene. The total acidity of the prepared systems plays an important role in determining the catalytic activity in the dehydrogenation of cyclohexane and cyclohexene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The selective oxidation of alkylaromatics is one of the main processes since the reaction products are important as intermediates in numerous industrial organic chemicals. Side-chain oxidation of alkyl aromatic compounds catalyzed by heterogeneous catalysts using cleaner peroxide oxidants is an especially attractive goal since classical synthetic laboratory procedures preferably use permanganate or acid dichromate as stoichiometric oxidants. In spite of many studies, there are very few which use hydrogen peroxide as a source of oxygen in the C-H activation of alkanes. Eflective utilization of ethylbenzene, available in the xylene stream of the petrochemical industry to more value added products is a promising one in chemical industry. The oxidation products of ethylbenzene are widely employed as intermediates in organic, steroid and resin synthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Iron was successfully incorporated in FDU-1 type cubic ordered mesoporous silica by a simple direct synthesis route. The (Fe/FDU-1) samples were characterized by Rutherford back-scattering spectrometry (RBS), small angle X-ray scattering (SAXS). N(2) sorption isotherm, X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). The resulting material presented an iron content of about 5%. Prepared at the usual acid pH of -0.3, the composite was mostly formed by amorphous silica and hematite with a quantity of Fe(2+) present in the structure. The samples prepared with adjusted pH values (2 and 3.5) were amorphous. The samples` average pore diameter was around 12.0 nm and BET specific surface area was of 680 m(2) g(-1). Although the iron-incorporated material presented larger lattice parameter, about 25 nm compared to pure FDU-1, the Fe/FDU-1 composite still maintained its cubic ordered fcc mesoporous structure before and after the template removal at 540 degrees C. The catalytic performance of Fe/FDU-1 was investigated in the catalytic oxidation of Black Remazol B dye using a catalytic ozonation process. The results indicated that Fe/FDU-1 prepared at the usual acid pH exhibited high catalytic activity in the mineralization of this pollutant when compared to the pure FDU-1. Fe(2)O(3) and Fe/FDU-1 prepared with higher pH of 2 and 3.5. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Chapter 1, rhodium nanoparticles were supported on multiwalled carbon nanotubes (MWCNTs) and bound to the magnetic core-shell system Fe3O4@TiO2. The composite Fe3O4@TiO2-Rh-MWCNT and the intermediates were characterized by SEM, EDS and TEM. Their catalytic activity was studied using i) the hydrogenation transfer of nitroarenes and cyclohexene in the presence of hydrazine hydrate; ii) the reduction of 2-nitrophenol with NaBH4; and iii) the decoloration of pigments in the presence of hydrogen peroxide. The results were monitored by gas chromatography (i) and UV Visible (ii and iii). In the second chapter, the catalytic activity of six oxidovanadium(V) aroylhydrazone complexes, viz. [VOL1(OEt)][VOL1(OEt)(EtOH)] (1), [VOL2(OEt)] (2), [Et3NH][VO2L1] (3), [VO2(H2L2)]2·EtOH (4), [VOL1(µ -O)VOL1] (5) and [VOL2(µ -O)VOL2] (6) (H2L1 = 3,5-di-tert-butyl-2-hydroxybenzylidene)-2hydroxybenzohydrazide and H2L2 = 3,5-di-tert-butyl-2-hydroxybenzylidene)-2 aminobenzohydrazide), anchored on nanodiamonds with different treatments, was studied towards the microwave-assisted partial oxidation of 1-phenylethanol to acetophenone in the presence of tert-butyl hydroperoxide (TBHP) as oxidant. A high selectivity for acetophenone was achieved for the optimized conditions. The possibility of recycling and reuse the heterogeneous catalysts was also investigated. In chapter 3, the catalytic activity of gold nanoparticles supported at different metal oxides, such as Fe2O3, Al2O3 ZnO or TiO2, was studied for the above reaction. The effect of the support, quantity of the catalyst and temperature was investigated. The recyclability of the gold catalysts was also studied. In the last chapter, a new copper nanocomposite with functionalized mutiwalled carbon nanotubes (Cu-MWCNT) was synthesized using a microwave assisted polyol method. The characterization was performed using XRD and SEM. The catalytic activity of Cu-MWCNT was studied through the degradation of pigments, such as amaranth, brilliant blue, indigo, tartrazine and methylene blue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To overcome the challenge of meeting growing energy demand in a sustainable way, biodiesel has shown very promising as alternative energy can replace fossil fuels, even partially. Industrially, the biodiesel is produced by homogeneous transesterification reaction of vegetable oils in the presence of basic species used as catalysts. However, this process is the need for purification of the esters obtained and the removal of glycerin formed after the reaction. This context, the alternative catalysts have that can improve the process of biodiesel production, aiming to reduce costs and facilitate its production. In this study, the AlSBA-15 support with Si / Al ratio = 50 was synthesized, as like as the heterogeneous catalysts of zinc oxide and magnesium supported on mesoporous AlSBA-15 silica, in the concentrations of 5, 10, 15 and 30 %, relative to the support. The textural properties and structural characterization of catalysts and supports were determined by techniques: X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) coupled to the chemical analyzer, adsorption / desorption of N2, thermal analysis (TG / DTG), absorption spectroscopy in the infrared (FTIR) and X-ray photoelectron spectroscopy (XPS). Characterization results indicated that the support AlSBA-15 retained the hexagonal ordered after the incorporation of zinc oxide and magnesium oxide in the holder. For heterogeneous catalysts, ZnO-AlSBA-15, that was observed the presence of zinc oxide nanoparticles dispersed in the surface and interior channels of the mesoporous and microporous support. The catalytic activity was evaluated by the transesterification reaction of sunflower oil via methylic route, and some reaction parameters were optimized with the most active catalyst in biodiesel production by sunflower oil. For the series of heterogeneous catalysts, the sample with 30 % ZnO supported on AlSBA-15 showed a better conversion of triglyceride to methyl esters, about 95.41 % of reaction conditions: temperature 175 °C, with molar ratio of 42:1, stirring at 200 rpm and under a pressure of 14 bar for 6 h. The catalyst MgO-AlSBA-15 showed no catalytic activity in the studied reactions