163 resultados para Metaheuristic
Resumo:
One of the main problems relief teams face after a natural or man-made disaster is how to plan rural road repair work tasks to take maximum advantage of the limited available financial and human resources. Previous research focused on speeding up repair work or on selecting the location of health centers to minimize transport times for injured citizens. In spite of the good results, this research does not take into account another key factor: survivor accessibility to resources. In this paper we account for the accessibility issue, that is, we maximize the number of survivors that reach the nearest regional center (cities where economic and social activity is concentrated) in a minimum time by planning which rural roads should be repaired given the available financial and human resources. This is a combinatorial problem since the number of connections between cities and regional centers grows exponentially with the problem size, and exact methods are no good for achieving an optimum solution. In order to solve the problem we propose using an Ant Colony System adaptation, which is based on ants? foraging behavior. Ants stochastically build minimal paths to regional centers and decide if damaged roads are repaired on the basis of pheromone levels, accessibility heuristic information and the available budget. The proposed algorithm is illustrated by means of an example regarding the 2010 Haiti earthquake, and its performance is compared with another metaheuristic, GRASP.
Resumo:
La tesis está focalizada en la resolución de problemas de optimización combinatoria, haciendo uso de las opciones tecnológicas actuales que ofrecen las tecnologías de la información y las comunicaciones, y la investigación operativa. Los problemas de optimización combinatoria se resuelven en general mediante programación lineal y metaheurísticas. La aplicación de las técnicas de resolución de los problemas de optimización combinatoria requiere de una elevada carga computacional, y los algoritmos deben diseñarse, por un lado pensando en la efectividad para encontrar buenas soluciones del problema, y por otro lado, pensando en un uso adecuado de los recursos informáticos disponibles. La programación lineal y las metaheurísticas son técnicas de resolución genéricas, que se pueden aplicar a diferentes problemas, partiendo de una base común que se particulariza para cada problema concreto. En el campo del desarrollo de software, los frameworks cumplen esa función de comenzar un proyecto con el trabajo general ya disponible, con la opción de cambiar o extender ese comportamiento base o genérico, para construir el sistema concreto, lo que permite reducir el tiempo de desarrollo, y amplía las posibilidades de éxito del proyecto. En esta tesis se han desarrollado dos frameworks de desarrollo. El framework ILP permite modelar y resolver problemas de programación lineal, de forma independiente al software de resolución de programación lineal que se utilice. El framework LME permite resolver problemas de optimización combinatoria mediante metaheurísticas. Tradicionalmente, las aplicaciones de resolución de problemas de optimización combinatoria son aplicaciones de escritorio que permiten gestionar toda la información de entrada del problema y resuelven el problema en local, con los recursos hardware disponibles. Recientemente ha aparecido un nuevo paradigma de despliegue y uso de aplicaciones que permite compartir recursos informáticos especializados por Internet. Esta nueva forma de uso de recursos informáticos es la computación en la nube, que presenta el modelo de software como servicio (SaaS). En esta tesis se ha construido una plataforma SaaS, para la resolución de problemas de optimización combinatoria, que se despliega sobre arquitecturas compuestas por procesadores multi-núcleo y tarjetas gráficas, y dispone de algoritmos de resolución basados en frameworks de programación lineal y metaheurísticas. Toda la infraestructura es independiente del problema de optimización combinatoria a resolver, y se han desarrollado tres problemas que están totalmente integrados en la plataforma SaaS. Estos problemas se han seleccionado por su importancia práctica. Uno de los problemas tratados en la tesis, es el problema de rutas de vehículos (VRP), que consiste en calcular las rutas de menor coste de una flota de vehículos, que reparte mercancías a todos los clientes. Se ha partido de la versión más clásica del problema y se han hecho estudios en dos direcciones. Por un lado se ha cuantificado el aumento en la velocidad de ejecución de la resolución del problema en tarjetas gráficas. Por otro lado, se ha estudiado el impacto en la velocidad de ejecución y en la calidad de soluciones, en la resolución por la metaheurística de colonias de hormigas (ACO), cuando se introduce la programación lineal para optimizar las rutas individuales de cada vehículo. Este problema se ha desarrollado con los frameworks ILP y LME, y está disponible en la plataforma SaaS. Otro de los problemas tratados en la tesis, es el problema de asignación de flotas (FAP), que consiste en crear las rutas de menor coste para la flota de vehículos de una empresa de transporte de viajeros. Se ha definido un nuevo modelo de problema, que engloba características de problemas presentados en la literatura, y añade nuevas características, lo que permite modelar los requerimientos de las empresas de transporte de viajeros actuales. Este nuevo modelo resuelve de forma integrada el problema de definir los horarios de los trayectos, el problema de asignación del tipo de vehículo, y el problema de crear las rotaciones de los vehículos. Se ha creado un modelo de programación lineal para el problema, y se ha resuelto por programación lineal y por colonias de hormigas (ACO). Este problema se ha desarrollado con los frameworks ILP y LME, y está disponible en la plataforma SaaS. El último problema tratado en la tesis es el problema de planificación táctica de personal (TWFP), que consiste en definir la configuración de una plantilla de trabajadores de menor coste, para cubrir una demanda de carga de trabajo variable. Se ha definido un modelo de problema muy flexible en la definición de contratos, que permite el uso del modelo en diversos sectores productivos. Se ha definido un modelo matemático de programación lineal para representar el problema. Se han definido una serie de casos de uso, que muestran la versatilidad del modelo de problema, y permiten simular el proceso de toma de decisiones de la configuración de una plantilla de trabajadores, cuantificando económicamente cada decisión que se toma. Este problema se ha desarrollado con el framework ILP, y está disponible en la plataforma SaaS. ABSTRACT The thesis is focused on solving combinatorial optimization problems, using current technology options offered by information technology and communications, and operations research. Combinatorial optimization problems are solved in general by linear programming and metaheuristics. The application of these techniques for solving combinatorial optimization problems requires a high computational load, and algorithms are designed, on the one hand thinking to find good solutions to the problem, and on the other hand, thinking about proper use of the available computing resources. Linear programming and metaheuristic are generic resolution techniques, which can be applied to different problems, beginning with a common base that is particularized for each specific problem. In the field of software development, frameworks fulfill this function that allows you to start a project with the overall work already available, with the option to change or extend the behavior or generic basis, to build the concrete system, thus reducing the time development, and expanding the possibilities of success of the project. In this thesis, two development frameworks have been designed and developed. The ILP framework allows to modeling and solving linear programming problems, regardless of the linear programming solver used. The LME framework is designed for solving combinatorial optimization problems using metaheuristics. Traditionally, applications for solving combinatorial optimization problems are desktop applications that allow the user to manage all the information input of the problem and solve the problem locally, using the available hardware resources. Recently, a new deployment paradigm has appeared, that lets to share hardware and software resources by the Internet. This new use of computer resources is cloud computing, which presents the model of software as a service (SaaS). In this thesis, a SaaS platform has been built for solving combinatorial optimization problems, which is deployed on architectures, composed of multi-core processors and graphics cards, and has algorithms based on metaheuristics and linear programming frameworks. The SaaS infrastructure is independent of the combinatorial optimization problem to solve, and three problems are fully integrated into the SaaS platform. These problems have been selected for their practical importance. One of the problems discussed in the thesis, is the vehicle routing problem (VRP), which goal is to calculate the least cost of a fleet of vehicles, which distributes goods to all customers. The VRP has been studied in two directions. On one hand, it has been quantified the increase in execution speed when the problem is solved on graphics cards. On the other hand, it has been studied the impact on execution speed and quality of solutions, when the problem is solved by ant colony optimization (ACO) metaheuristic, and linear programming is introduced to optimize the individual routes of each vehicle. This problem has been developed with the ILP and LME frameworks, and is available in the SaaS platform. Another problem addressed in the thesis, is the fleet assignment problem (FAP), which goal is to create lower cost routes for a fleet of a passenger transport company. It has been defined a new model of problem, which includes features of problems presented in the literature, and adds new features, allowing modeling the business requirements of today's transport companies. This new integrated model solves the problem of defining the flights timetable, the problem of assigning the type of vehicle, and the problem of creating aircraft rotations. The problem has been solved by linear programming and ACO. This problem has been developed with the ILP and LME frameworks, and is available in the SaaS platform. The last problem discussed in the thesis is the tactical planning staff problem (TWFP), which is to define the staff of lower cost, to cover a given work load. It has been defined a very rich problem model in the definition of contracts, allowing the use of the model in various productive sectors. It has been defined a linear programming mathematical model to represent the problem. Some use cases has been defined, to show the versatility of the model problem, and to simulate the decision making process of setting up a staff, economically quantifying every decision that is made. This problem has been developed with the ILP framework, and is available in the SaaS platform.
Resumo:
Se aborda como objetivo una reflexión operativa sobre los actos creativos en el proyecto de arquitectura investigando los procedimientos que intervienen recurrentemente en los procesos del aprendizaje y proyectación. Aprendizaje entendido como actitud ininterrumpida en el discurso del creador, estado inacabado, en constante evolución, continuo, no suscrito al momento particular, como situación connatural al hecho creativo. El marco epistemológico de la Creatividad y sus técnicas asociadas en constante aplicación en otras disciplinas se desvela como un sustrato gnoseológico referencial para el entendimiento de los procesos de génesis y producción del proyecto y su aprendizaje. Se inscribe la investigación de la tesis en una doble línea de pensamiento lógico-racional y lógico-intuitivo, mediante inferencias de naturaleza deductiva, inductiva y abductiva. Se busca suscitar un interés por la creatividad que contribuya a extender el campo de investigación sobre cómo se genera y se produce la arquitectura y su aplicación al aprendizaje. Proponemos la elaboración de una cartografía taxonómica de procedimientos creativos en el proyectar, de tal manera que nos conduzca hacia la enunciación de una Metaheurística de la Creatividad. Metaheurística que contenga el mapa operativo de Procedimientos y de sus Metaprincipios de aplicación a distintos entornos y problemas, con capacidad de respuesta adaptativa en todos los estados divergentes del proceso. Cartografía, en definitiva, de relaciones más que de sistematizaciones. Este mapa creativo estará formado por 9 Procedimientos resultado de 9 aproximaciones que constituyen 9 Lógicas de acción y razonamiento, en unas condiciones de campo hologramáticas. Enfocadas hacia una nueva actitud creativa, desprejuiciada, atenta a los flujos transdisciplinares, regida indistintamente por el azar y el rigor, expansiva y condensadora, múltiple y poliédrica, abierta e inconclusa, lúdica y frívola, automática e impredecible. Actitud creativa que actúa con lógicas procedimentales relacionales, siempre en constante redefinición, alejadas de toda teorización, sin constituir un meta-relato, más como gestión de información que como dispositivo disciplinar: abductiva, analógica, sinéctica, metafórica, difusa, azarosa, suspendida, divergente y des_aprendida. ABSTRACT Abstract: An operative reflection is approached as aim on the creative acts in the project of architecture, investigating the procedures involved recursively in the processes of learning and project. Learning understood as uninterrupted attitude in the speech of the creator, in unfinished condition, in constant evolution, continuous, not signed to the particular moment, as inherent to the creative fact. The epistemological framework of the Creativity and its techniques associated in constant application in other disciplines is revealed as a referential gnoseologic substratum for the understanding of the processes of genesis and production of the project and his learning. The investigation of the thesis registers in a double line of logical - rational and logical - intuitive thought, by means of inferences of deductive, inductive and abductive nature. One seeks to arouse an interest in the creativity that will help to extend the field of investigation on how it is generated and produces the architecture and its application to the learning. We propose the elaboration of a taxonomic mapping creative procedures in the project, in such a way to lead us towards the enunciation of a Metaheuristic of creativity. Metaheuristic that contains containing the operative map of Procedures and their Metaprinciples of application to different environments and problems, with capacity of adaptive response in all the divergent conditions of the process. Cartography, definitively, of relationships rather than of systematizings. The map of procedures will be formed by 9 procedures as result of 9 approaches that constitute 9 logics of action and reasoning, in hologramatics conditions of field. Focused on a new creative attitude, ideologically unbiased, attentive to transdisciplinary flows, governed either by random and rigor, expansive and condenser, multiple and multifaceted, open and unfinished, playful and frivolous, automatic and unpredictable. Creative attitude that acts with procedural relational logics, always in constant redefinition, away from all theorizing, without being a meta-relate, more like information that discipline as device management: abductive, analogical, synectical, metaphorical, diffuse, randomness, suspended, divergent and mis_learnt.
Resumo:
Hardware/Software partitioning (HSP) is a key task for embedded system co-design. The main goal of this task is to decide which components of an application are to be executed in a general purpose processor (software) and which ones, on a specific hardware, taking into account a set of restrictions expressed by metrics. In last years, several approaches have been proposed for solving the HSP problem, directed by metaheuristic algorithms. However, due to diversity of models and metrics used, the choice of the best suited algorithm is an open problem yet. This article presents the results of applying a fuzzy approach to the HSP problem. This approach is more flexible than many others due to the fact that it is possible to accept quite good solutions or to reject other ones which do not seem good. In this work we compare six metaheuristic algorithms: Random Search, Tabu Search, Simulated Annealing, Hill Climbing, Genetic Algorithm and Evolutionary Strategy. The presented model is aimed to simultaneously minimize the hardware area and the execution time. The obtained results show that Restart Hill Climbing is the best performing algorithm in most cases.
Resumo:
El particionado hardware/software es una tarea fundamental en el co-diseño de sistemas embebidos. En ella se decide, teniendo en cuenta las métricas de diseño, qué componentes se ejecutarán en un procesador de propósito general (software) y cuáles en un hardware específico. En los últimos años se han propuesto diversas soluciones al problema del particionado dirigidas por algoritmos metaheurísticos. Sin embargo, debido a la diversidad de modelos y métricas utilizadas, la elección del algoritmo más apropiado sigue siendo un problema abierto. En este trabajo se presenta una comparación de seis algoritmos metaheurísticos: Búsqueda aleatoria (Random search), Búsqueda tabú (Tabu search), Recocido simulado (Simulated annealing), Escalador de colinas estocástico (Stochastic hill climbing), Algoritmo genético (Genetic algorithm) y Estrategia evolutiva (Evolution strategy). El modelo utilizado en la comparación está dirigido a minimizar el área ocupada y el tiempo de ejecución, las restricciones del modelo son consideradas como penalizaciones para incluir en el espacio de búsqueda otras soluciones. Los resultados muestran que los algoritmos Escalador de colinas estocástico y Estrategia evolutiva son los que mejores resultados obtienen en general, seguidos por el Algoritmo genético.
Resumo:
We present a derivative-free optimization algorithm coupled with a chemical process simulator for the optimal design of individual and complex distillation processes using a rigorous tray-by-tray model. The proposed approach serves as an alternative tool to the various models based on nonlinear programming (NLP) or mixed-integer nonlinear programming (MINLP) . This is accomplished by combining the advantages of using a commercial process simulator (Aspen Hysys), including especially suited numerical methods developed for the convergence of distillation columns, with the benefits of the particle swarm optimization (PSO) metaheuristic algorithm, which does not require gradient information and has the ability to escape from local optima. Our method inherits the superstructure developed in Yeomans, H.; Grossmann, I. E.Optimal design of complex distillation columns using rigorous tray-by-tray disjunctive programming models. Ind. Eng. Chem. Res.2000, 39 (11), 4326–4335, in which the nonexisting trays are considered as simple bypasses of liquid and vapor flows. The implemented tool provides the optimal configuration of distillation column systems, which includes continuous and discrete variables, through the minimization of the total annual cost (TAC). The robustness and flexibility of the method is proven through the successful design and synthesis of three distillation systems of increasing complexity.
Resumo:
La traduction automatique statistique est un domaine très en demande et où les machines sont encore loin de produire des résultats de qualité humaine. La principale méthode utilisée est une traduction linéaire segment par segment d'une phrase, ce qui empêche de changer des parties de la phrase déjà traduites. La recherche pour ce mémoire se base sur l'approche utilisée dans Langlais, Patry et Gotti 2007, qui tente de corriger une traduction complétée en modifiant des segments suivant une fonction à optimiser. Dans un premier temps, l'exploration de nouveaux traits comme un modèle de langue inverse et un modèle de collocation amène une nouvelle dimension à la fonction à optimiser. Dans un second temps, l'utilisation de différentes métaheuristiques, comme les algorithmes gloutons et gloutons randomisés permet l'exploration plus en profondeur de l'espace de recherche et permet une plus grande amélioration de la fonction objectif.
Resumo:
La traduction automatique statistique est un domaine très en demande et où les machines sont encore loin de produire des résultats de qualité humaine. La principale méthode utilisée est une traduction linéaire segment par segment d'une phrase, ce qui empêche de changer des parties de la phrase déjà traduites. La recherche pour ce mémoire se base sur l'approche utilisée dans Langlais, Patry et Gotti 2007, qui tente de corriger une traduction complétée en modifiant des segments suivant une fonction à optimiser. Dans un premier temps, l'exploration de nouveaux traits comme un modèle de langue inverse et un modèle de collocation amène une nouvelle dimension à la fonction à optimiser. Dans un second temps, l'utilisation de différentes métaheuristiques, comme les algorithmes gloutons et gloutons randomisés permet l'exploration plus en profondeur de l'espace de recherche et permet une plus grande amélioration de la fonction objectif.
Resumo:
In this paper a Variable Neighborhood Search (VNS) algorithm for solving the Capacitated Single Allocation Hub Location Problem (CSAHLP) is presented. CSAHLP consists of two subproblems; the first is choosing a set of hubs from all nodes in a network, while the other comprises finding the optimal allocation of non-hubs to hubs when a set of hubs is already known. The VNS algorithm was used for the first subproblem, while the CPLEX solver was used for the second. Computational results demonstrate that the proposed algorithm has reached optimal solutions on all 20 test instances for which optimal solutions are known, and this in short computational time.
Resumo:
We analyze a business model for e-supermarkets to enable multi-product sourcing capacity through co-opetition (collaborative competition). The logistics aspect of our approach is to design and execute a network system where “premium” goods are acquired from vendors at multiple locations in the supply network and delivered to customers. Our specific goals are to: (i) investigate the role of premium product offerings in creating critical mass and profit; (ii) develop a model for the multiple-pickup single-delivery vehicle routing problem in the presence of multiple vendors; and (iii) propose a hybrid solution approach. To solve the problem introduced in this paper, we develop a hybrid metaheuristic approach that uses a Genetic Algorithm for vendor selection and allocation, and a modified savings algorithm for the capacitated VRP with multiple pickup, single delivery and time windows (CVRPMPDTW). The proposed Genetic Algorithm guides the search for optimal vendor pickup location decisions, and for each generated solution in the genetic population, a corresponding CVRPMPDTW is solved using the savings algorithm. We validate our solution approach against published VRPTW solutions and also test our algorithm with Solomon instances modified for CVRPMPDTW.
Resumo:
Real world search problems, characterised by nonlinearity, noise and multidimensionality, are often best solved by hybrid algorithms. Techniques embodying different necessary features are triggered at specific iterations, in response to the current state of the problem space. In the existing literature, this alternation is managed either statically (through pre-programmed policies) or dynamically, at the cost of high coupling with algorithm inner representation. We extract two design patterns for hybrid metaheuristic search algorithms, the All-Seeing Eye and the Commentator patterns, which we argue should be replaced by the more flexible and loosely coupled Simple Black Box (Two-B) and Utility-based Black Box (Three-B) patterns that we propose here. We recommend the Two-B pattern for purely fitness based hybridisations and the Three-B pattern for more generic search quality evaluation based hybridisations.
Resumo:
The Traveling Salesman with Multiple Ridesharing (TSP-MR) is a type of the Capacitated Traveling Salesman, which presents the possibility of sharing seats with passengers taking advantage of the paths the salesman travels through his cycle. The salesman shares the cost of a path with the boarded passengers. This model can portray a real situation in which, for example, drivers are willing to share parts of a trip with tourists that wish to move between two locations visited by the driver’s route, accepting to share the vehicle with other individuals visiting other locations within the cycle. This work proposes a mathematical formulation for the problem, and an exact and metaheuristics algorithms for its solution, comparing them.
Resumo:
The Traveling Salesman with Multiple Ridesharing (TSP-MR) is a type of the Capacitated Traveling Salesman, which presents the possibility of sharing seats with passengers taking advantage of the paths the salesman travels through his cycle. The salesman shares the cost of a path with the boarded passengers. This model can portray a real situation in which, for example, drivers are willing to share parts of a trip with tourists that wish to move between two locations visited by the driver’s route, accepting to share the vehicle with other individuals visiting other locations within the cycle. This work proposes a mathematical formulation for the problem, and an exact and metaheuristics algorithms for its solution, comparing them.
Resumo:
Large scale disasters, such as the one caused by the Typhoon Haiyan, which devastated portions of the Philippines in 2013, or the catastrophic 2010 Haiti earthquake, which caused major damage in Port-au-Prince and other settlements in the region, have massive and lasting effects on populations. Nowadays, disasters can be considered as a consequence of inappropriately managed risk. These risks are the product of hazards and vulnerability, which refers to the extent to which a community can be affected by the impact of a hazard. In this way, developing countries, due to their greater vulnerability, suffer the highest costs when a disaster occurs. Disaster relief is a challenge for politics, economies, and societies worldwide. Humanitarian organizations face multiple decision problems when responding to disasters. In particular, once a disaster strikes, the distribution of humanitarian aid to the population affected is one of the most fundamental operations in what is called humanitarian logistics. This term is defined as the process of planning, implementing and controlling the effcient, cost-effective ow and storage of goods and materials as well as related information, from the point of origin to the point of consumption, for the purpose of meeting the end bene- ciaries' requirements and alleviate the suffering of vulnerable people, [the Humanitarian Logistics Conference, 2004 (Fritz Institute)]. During the last decade there has been an increasing interest in the OR/MS community in studying this topic, pointing out the similarities and differences between humanitarian and business logistics, and developing models suited to handle the special characteristics of these problems. Several authors have pointed out that traditional logistic objectives, such as minimizing operation cost, are not the most relevant goals in humanitarian operations. Other factors, such as the time of operation, or the design of safe and equitable distribution plans, come to the front, and new models and algorithms are needed to cope with these special features. Up to six attributes related to the distribution plan are considered in our multi-criteria approach. Even though there are usually simple ways to measure the cost of an operation, the evaluation of some other attributes such as security or equity is not easy. As a result, several attribute measures are proposed and developed, focusing on different aspects of the solutions. Furthermore, when metaheuristic solution methods are used, considering non linear objective functions does not increase the complexity of the algorithms significantly, and thus more accurate measures can be utilized...