979 resultados para Mesozoic-cenozoic tectonics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on fine structural interpretation on seismic profiles of buried-hills in Huanghua depression, structural interpretation and balanced cross-section restoration of regional seismic profiles, drawing structural maps of main seismic interfaces, residual strata distribution of different ages in the Bohai Bay region and structural survey in the western Shandong uplifted area and the intracontinental orogeny of Yanshan mountain, the paper has studied pre-tertiary structural styles and tectonic evolution of the Bohai Bay region. There mainly develop 5 types of pre-tertiary structural style that are extension structure, compression structure, strike-slip structure, negative inversion structure and sliding structure in the Bohai Bay region. Among these 5 types of structural style, extension structure develops detachment fault and its controlling fault terrain structure and fault break slop; compression structure develops reverted fold, fault propagation fold, fault bent fold, imbricate thrust structure and triangle zone; strike-slip structure develops positive flower structure, negative flower structure, en-echelon structure and brush structure; negative reversion structure develops Indosinian compression and Yanshanian extension negative reversion structure, late Yanshanian compression and Cenozoic extension negative reversion structure; sliding structure develops interlayer sliding structure and detachment structure. According to Cangdong fault of SN direction, Zhangjiakou – Penglai fault and Qihe – Guangrao fault of NWW direction, the Bohai Bay region can be divided into 6 sub-regions in which structural direction and style is different from each other. Structural maps of bottom boundary of Cenozoic and upper Paleozoic manifest that main NNE structural direction is formed from late Yanshanian to Himalayan movement and minor NWW structural direction and a string of area more than 8000m are mainly suggest that Indosinian tectonic pattern strongly influence on Yanshanian and Himalayan movement. Residual strata distribution characteristics of middle to upper Neoproterozoic in the Bohai Bay region manifest that middle- to neo- aulacogen position may be corresponding to late Mesozoic uplifted zone. Residual Paleozoic distribution characteristics of main ENN suggest that structural alteration should be resulted from late Yanshanian to Himalayan movement while which of minor NWW structures suggest that deeper structure should restrict shallower structure. Structural patterns of main EW fold direction in the Bohai Bay region and thrust structure in eastern part are formed late Triassic in studied area. Granite magma intrusion of early to middle Jurassic mainly develops Yanshan mountain zone. Late Mesozoic rifting basins of NEE direction are widely distributed in the Bohai Bay region and granite magma intrusions are mainly distributed in Tancheng – Rongcheng zone. Mesozoic structural evolution in the Bohai Bay region is related to scissor convergent from east to west between North China plate and Yangtze plate and gradually reinforcing of the west circum-pacific tectonic tract while basin and range province of late Jurassic and early Cretaceous may be mainly related to lithospheric thinning of North China craton in late Mesozoic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oil and gas potential of Northeast Asia is enormous, but the degree of exploration is very low in Northeast Asia (the degree is below 3%-10%).The reasons are as follows: First, it is relatively difficult to study the oil and gas bearing basins(OGB), which are of multiple types, in different tectonic settings, with complex geologic frameworks and with long-term geologic evolution. Secondly, because of the non-equilibrium in development of economy and regional market, application of theories and techniques and the research levels in different countries, the conclusions are not conformable, and even contradictory. Thirdly, most of the former researches were limited to one territory or one basin, and lack of systematical and in-depth study on geotectonic evolution, classification of basins, and the evaluation of hydrocarbon resources. In this thesis, integrated study of the regional tectonic feature and basin features of Northeast Asia was done, to understand the basin evolution history and the controlling action on oil and gas. Then, new conclusions are and exploration proposals are as following: 1. Geotectonic evolution in Northeast Asia: The main structural motion system in Paleozoic Era was longitudinal, and in Meso-cenozoic was latitudinal with the Pacific Ocean. The whole evolution history was just the one of pulling-apart, cutting-out, underthrusting and collision of the Central Asia- Mongolia Ocean and the Pacific Ocean. 2. The evolution characteristics of basins in Northeast Asia: mainly developed from longitudinal paste-up, collision and relaxation rifting motion in Paleozoic-Early Mesozoic Era and from underthrust, accretion, and receding of subducted zone of the Pacific Ocean in Late Mesozoic Era-Cenozoic Era. 3. The research in basin classification of Northeast Asia: According to geotectonic system, the basins can be classified into three types: intracratonic, pericratonic and active zone basin. And they can be further classified into 18 different types according to genetic mechanism and dynamic features. 4. The master control factors of oil and gas accumulation in Northeast Asia: high quality cap-rock for craton and pericrationic basin, the effective source rock and high quality cap-rock for Mesozoic rifted basins, intra-arc, fore-arc and back-arc basins. Graded exploration potential of oil and gas for basin in Northeast Asia according to 7 factor, hereby, divided the oil and gas potential of basins into 5 levels. 5. Evaluation of hydrocarbon resources: The difference of resource potential among these basins is huge in Northeast Asia. The evaluation of Mesozoic rifted basin and Pacific Ocean basin showed that the large scale rifted basin and retroarc basin(including backarc marginal sea basin) have great resource potential. 6. The writer believes that the next step should pay more attention to the evaluation of petroleum resource in Far East part of Russia and trace them. On the other hand, according to integrated analysis of oil/gas resource potential and the operation difficulty in this area, suggests that East-Siberia basin, East-Gobi-Tamchag basin, Sakhalin basin, North-Okhotck basin, West-Kamchatka basin could be as cooperation priority basins in future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The West Shandong Uplift and its adjacent basins, with same evolutional history before Mesozoic, are an important basin-orogenic systems in North China. After late Mesozoic, tectonic differentiation between basin and orogenic belt gradually displayed in the study area. The Boxing sag is a part of Jiyang Depression near to West Shandong Uplift, in which the whole Mesozoic and Cenozoic strata are preserved. Based on the analysis of sedimentary records in the Boxing sag, the Cenozoic structural and sedimentary evolutions in Boxing Sag and its response to Western Shandong uplift are discussed in this dissertation. The main conclusions in this research are presented as follows. Based on Seismic and well logging profile interpretation, fault growth index, thickness difference between bottom wall and top wall and fault activity rate from Eocene to Pliocene are studied. Boxing sag had three main faults, NE, NW and NEE trending faults. Research shows that the activity of the NW trending fault in the Boxing sag became weaken from E1-2S4 to N2m gradually. The evolution of NE and the NEE trending fault can be divided into three episodes, from E1-2k to E2s4, from E2s3 to E3s1, from N2m to E3d. The analysis of Paleogene samples of heavy mineral assemblages shows that metamorphic rocks represented by garnet, intermediate-acid igneous rocks represented by the assemblage of apatite, zircon and tourmaline became less from E1-2k to N2g, and sedimentary rocks represented by the assemblage of pyrite, barite and limonite also became less. Intermediate-basic igneous rocks represented by the assemblage of leucoxene, rutile and ilmenite and metamorphic rocks represented by epidote became more and more. Electronic microprobe analysis shows that glaucophane and barroisite are existed in Kongdian Formation and the 4th member of Shahejie Formation, and they demonstrate that Western Shandong and Eastern Shandong are all the source regions of the Boxing Sag, and they also indicate that oceanic crust existed before the collision between the Yangtze and North China continent. The fact that Eastern Shandong is the source region of Boxing Sag also indicates that Western Shandong was not high enough to prevent sediment from Eastern Shandong at E1-2k and E2s4. The results of the dating of five detrital zircons of Boxing Sag show Kongdian Formation and the 4th member of Shahejie Formation have the age peaks of 2800Ma and 700-800. It means that Eastern Shandong is the source region of Boxing Sag at early Paleogene and Western Shandong is not high enough to prevent the sediment from Eastern Shandong. The ages of 160-180 and 220-260 Ma, which exist in the Guantao Formation and Paleogene, are common in Eastern Shandong and rare in Western Shandong,and it implied that Western Shandong is a low uplift at 24Ma. The Paleogene strata have almost same age groups, while the Guantao Formation has significant variations of age groups, and this indicates that Boxing Sag and Western Shandong uplift had taken place tremendous changes. The results of apatite fission track in Boxing sag show that three times uplifts happened at the source region at 60 Ma, 45Ma and 15Ma respectively, and the Boxing sag experienced two subsidences at 60Ma, 45Ma and one uplift at 20Ma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over past ten years, a great development has been made in the Lu-Hf isotopic system with the advent of MC-ICP-MS. Based on a comprehensive review of available references in the related field, a novel analytical protocol of three exchange chromatographies after one mixed acid attacking geological samples was developed in this work, which not only avoids common multiple sample treatments for natural inhomegeneous samples, but also is useful for Rb-Sr, Sm-Nd and Lu-Hf isotopic system simultaneously, especially for the garnet- and apatite-bearing rocks for the Sm-Nd and Lu-Hf geochronology. An analytical procedure for the Lu and Hf concentration in geological samples determined by by ID-MC-ICP-MS was detailedly investigated. The Hf yield is > 90 % and total procedural blank is less than. 50 pg for Hf and 10 pg for Lu, respectively. The developed method was successfully applied to the determination of Lu and Hf concentrations for USGS geological materials. A one-column procedure for Hf purification in geological samples using common anion exchange chromatography and its isotopic analyses by MC-ICP-MS were also established. Multiple analyses of Standard Reference Materials demonstrate that this method was simple, time-saving, cheap and efficient, especially suitable for the Hf isotopic compositions of young samples. Finally, the measurements of Sr and Nd isotopic compositions using Neptune MC-ICP-MS were described briefly, which indicates that Neptune MC-ICP-MS can precisely measure Sr and Nd isotopic compositions as the TIMS does, even more efficient and less time-consuming than the TIMS method. The Hf isotopic characteristics of typical volcanic rocks (Cenozoic Changle-Linqu basalts, Mesozoic Fangcheng basalts, Mesozoic Jianguo basalts, Mesozoic Wulahada high-Mg andesite, Cenozoic Fanshi, Zuoquan and Xiyang-Pingding basalts of the Taihang Mountains, Paleozoic diamondiferous Menyin and Fuxian Kimblites) from the North China Craton were firstly studied in this work. Coupled with Nd isotopic compositions, it shows that the Hf isotopes could be a better tracer for mantle sources than the Nd isotopes. Individual kimberlite fields from both the Mengyin and Fuxian regions have quite uniform Hf isotopic compositions, similar to the situation for the Nd isotopes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The disequilibrium between supply and demand the east part of North China accelerated natural gas exploration in Bohai bay basin. Exploration practice showed that coal-derived gas is important resource. In searching of big to middle scaled coal derived gas field, and realize successive gas supply, the paper carried out integrated study on structural evolution of Pre-Tertiary and evaluation of reservoir forming condition of coal-derived gas. Study work of the paper was based on the following condition: available achievement in this field at present, good understanding of multiphase of tectonic movement. Study work was focused on geological evolution, source rock evaluation and dissection key factors controlling reservoir forming. Based on analysis of seismic data, drilling data, tectonic style of Pre-Tertiary was subdivided, with different tectonic style representing different tectonic process. By means of state of the art, such as analysis of balanced cross section, and erosion restoration, the paper reestablished tectonic history and analyzed basin property during different tectonic phase. Dynamic mechanism for tectonic movement and influence of tectonic evolution on tectonic style were discussed. Study made it clear that tectonic movement is intensive since Mesozoic including 2 phase of compressional movement (at the end of Indo-China movement, and Yanshan movement), 2 phase of extensional movement (middle Yanshan movement, and Himalayan movement), 2 phase of strike slip movement, as well as 2 phase of reversal movement (early Yanshan movement, and early Himalayan movement). As a result, three tectonic provinces with different remnant of strata and different tectonic style took shape. Based on afore mentioned study, the paper pointed out that evolution of Bohai bay basin experienced the following steps: basin of rift valley type (Pt2+3)-craton basin at passive continental margin (∈1-2)-craton basin at active continental margin (∈3- O)-convergent craton basin (C-T1+2)-intracontinental basin (J+K). Superposition of basins in different stage was discussed. Aimed at tectonic feature of multiple phases, the paper put forward concept model of superposition of tectonic unit, and analyzed its significance on reservoir forming. On basis of the difference among 3 tectonic movements in Mesozoic and Cenozoic, superposition of tectonic unit was classified into the following 3 categories and 6 types: continuous subsidence type (I), subsidence in Mesozoic and uplift for erosion in Cenozoic (II1), repeated subsidence and uplift in Mesozoic and subsidence in Cenozoic (II2), repeated subsidence and uplift in Mesozoic and uplift for erosion in Cenozoic (II3), uplift for erosion in Mesozoic and subsidence in Cenozoic (II4), and continuous uplift (III). Take the organic facies analysis as link, the paper established relationship between sedimentary environment and organic facies, as well as organic facies and organic matter abundance. Combined information of sedimentary environment and logging data, the paper estimated distribution of organic matter abundance. Combined with simulation of secondary hydrocarbon generation, dynamic mechanism of hydrocarbon generation, and thermal history, the paper made static and dynamic evaluation of effective source rock, i.e. Taiyuan formation and Shanxi formation. It is also pointed out that superposition of tectonic unit of type II2, type II4, and type I were the most favorable hydrocarbon generation units. Based on dissection of typical primary coal-derived gas reservoir, including reservoir forming condition and reservoir forming process, the paper pointed out key factors controlling reservoir forming for Carboniferous and Permian System: a. remnant thickness and source rock property were precondition; b. secondary hydrocarbon generation during Himalayan period was key factor; c. tectonic evolution history controlling thermal evolution of source rock was main factor that determine reservoir forming; d. inherited positive structural unit was favorable accumulation direction; e. fault activity and regional caprock determined hydrocarbon accumulation horizon. In the end, the paper established reservoir forming model for different superposition of tectonic units, and pointed out promising exploration belts with 11 of the first class, 5 of the second class and 6 of the third class.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrocarbon migration and accumulation are the important process to form reservoirs in sedimentary basins, and their researches are usually very difficult to be done in petroleum geology. In this paper, the west segment of northern margin of the Qaidam Basin was selected as study area. The concept of fault open coefficient, that combines multi-factors dealing with fault sealing, was applied to estimate semi-quantitatively the sealing characteristics of six faults which were considered controlling the hydrocarbon migration and accumulation. The data from boreholes were investigated to appraise the permeable characteristics of lithology combinations upon and beneath the unconformity surface. The result suggests that the basal conglomerates consist frequently the carriers. The data from boreholes and outcrops were collected to describe the sand carrier system. In order to eliminate the influence of inverse activities of the basin that made the formations be very steep, author adopts the phase method to build the basin models: for the steps before Pliocene the recovered true thickness maps were used to build the basin block; for the steps after Pliocene, the structure maps of today were used to build the basin block. During the modeling process, the results were calibrated by various measured data . the modeled results includes the dynamic evolvement course of trap form phase, vitrinite reflectance mature, the source rock expelled hydrocarbon intensity and fluid potential and petroleum plays. Author integrates the source rock expelled hydrocarbon intensity, fluid potential and carrier system and apply the migration technology based on percolation theory to simulate the oil and gas migration and accumulation course in the main accumulation times. The dominant pathways of oil and gas may show clearly the prospect distribution. Based on the hydrocarbon migration characteristics, the main control factors were synthesized, that including the effective source rock distribution, the match relationship of structural trap forming and hydrocarbon expelling from source rocks, the unconformity of Mesozoic and Cenozoic, the structures and the faults movement at Quaternary Finally, the author figures out the prospect plays in the study area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main research area of this thesis is the Western Depression in the Liaohe Basin. Based on the drilling core observation and mud logging data, the features of the mantle–derived fluids and their effects on oil/gas generation in the Western Depression of the Liaohe Basin,was studied with comprehensive methods of volcanic petrology, sediment petrology, fluid geochemistry, sedimentlogy, and structural geology, and use of polarized light microscope, fluorescence microscope, electron microscope, fluid and melt inclusion test, and isotopic test of nature gas etc. The observation of drill cores in study area and other studies reveal that the main passageway of the volcanic eruption in the Cenozoic was the Xibaqian-Gaosheng fault, and the volcanic rocks of each stage were distributed around it. Mantle-derived fluid which affected on oil/gas generation formed later than the volcanic spew and those fluids entered into the depression through the Taian-Dawa fault and the Central fault. The volatile fraction analysis of the melt inclusion reveals the presence of two kinds of mantle fluids; they are hydrogen-rich fluid and carbon dioxide-rich fluid. These the two kinds of fluids were mainly distributed in olivine and pyroxene respectively. The hydrothermal veins development have multiple stages, from high temperature quartz vein to low temperature calcite vein and analcime vein, in which the fluid inclusion extremity component are methane and carbon dioxide, which indicate that when mantle-derived fluids ascended and entered into the basin, most of these fluids interacted with the organic matter in the basin even though some of these entered into atmosphere. The present isotopic test of the nature gas reveals the high 3He/4He value between the region of the Taian-Dawa fault and the Central fault, which also imply the feature of origin in mantle. This phenomenon indicates that the Mesozoic basement faults and the main Cenozoic faults had connected crust and the mantle during the basin evolution, so the mantle derived fluids could enter the basin along those faults. The main source rocks of the ES3 and ES4 members of the Shahejie Formation began to expel hydrocarbon at the end period of the ES1 member of the Shahejie Formation, and reached its peak during the period of the Dongying Formation deposition. During these periods, the mantle derived-fluids entered the basin constantly along the main faults, and supplied lots of hydrogen for hydrocarbon generation. Though the volcanic rocks and the mantle-derived fluids in the Eastern Depression were more developed than in the Western Depression, the source rocks and the deep fluids were not interacted better than the Western Depression because of the affection of structural evolution. In the Eocene, the Eastern Depression did not deposit the ES4 member of the Shahejie Formation, furthermore, the mantle-fluid formed in the Fangshengpao stage escaped to the atmosphere, which confined the later stage hydrocarbon generation capability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

China’s annual oil import volume has been increasing in recent years, but the oil price in the international market fluctuates and poses a severe threat to China’s economic development and national security. Therefore, it is of great importance to study the gas and oil exploration of Pre-Cenozoic Residual Basins in Yellow Sea. Yellow Sea has widespread and thick Mesozoic and Paleozoic strata that contain multilayer source rock. Hence, Yellow Sea Mesozoic and Paleozoic strata have good conditions of forming Pre-Cenozoic hydrocarbon reservoirs. Pre-Cenozoic Residual Basins are usually buried deep and then transformed many times in its long evolutional history. These characteristics make it difficult to apply a single method in exploring Pre-Cenozoic Residual Basins. On the other hand, it is highly effective to solve key problems of gas and oil exploration of Pre-Cenozoic Residual Basins in Yellow Sea by using integrated geological and geophysical methods which make full use of the advantages of various exploring techniques. Based on the principle of “the region controls the local; the deep restricts the shallow,” this study focuses on Pre-Cenozoic Residual Basins in Yellow Sea to describe the structure frame of its distribution, with gravity, magnetic, seismic, drill-hole and geological data and previous research findings. In addition, the distribution characteristics of Pre-Cenozoic Residual Basins in Yellow Sea are also analyzed. This paper explores the characteristics of error between gravity forward with constant density and gravity forward with variable density through the study on 2-D and 3-D gravity forward in frequency domain. The result shows that there is a linear relationship between error and depth of 2-D geological model but there is a nonlinear relationship between error and depth of 3-D geological model. The error can be removed according to its linear characteristics or statistical nature of nonlinear characteristics. There is also error between gravity inversion with constant density and gravity inversion with variable density due to variable density and edge-effect. Since there are not noticeable rules between the error and the two causes as variable density and edge-effect, this study adopts gravity inversion with variable density and methods to eliminate the edge-effect in basement inversion to improve inversion accuracy. Based on the study on the rock physical properties and strata distribution of Yellow Sea and adjacent regions, this study finds that there is a big density contrast between Cretaceous-Jurassic strata and their substratum. The magnetic basement of south Yellow Sea is regarded as top of Archeozoic-Proterozoic early strata, and there are double magnetic basements in north Yellow Sea. Gravity and magnetic data are used to inverse the gravity basement and magnetic basement of Yellow Sea, with seismic and drill-hole data as constrains. According to data of gravity and magnetic basement distribution, the depth of Cenozoic strata and previous research findings, this paper calculates the thickness of the Mesozoic and Pre-Mesozoic Residual Basins, draws the distribution outline of Pre-Cenozoic Residual Basins in Yellow Sea, and analyzes its macro-distribution characteristics. Gravity inversion is applied on a typical geological profile in Yellow Sea to analyze the characteristics of its fractures and magnetic basements. The characteristics of Pre-Cenozoic Residual Basins distribution outline in Yellow Sea and the fractures and magnetic basements of its typical profile shown by profile inversion provides new geophysical evidence for these structure views such as “the South Yellow Sea and the North Yellow Sea belong to different structural units” and “Sino-Korea and Yangtze blocks combine along Yellow Sea East Fractured Zone in Yellow Sea”.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Western Qinling, a conjunction region of the North China Craton, the Yangtze Craton and the Tibetan Plateau, has very complicated history of geologic and tectonic evolution. Previous studies mainly focus on tectonics and petrology of volcanic rocks in the western Qinling. Therefore, little is known about the Cenozoic lithospheric mantle beneath the western Qinling. Mafic, ultramafic and/or alkaline volcanic rocks and their entrained mantle peridotitic xenoliths and xenocrysts are known as samples directly from the lithospheric mantle. Their petrological and geochemical characteristics can reflect the nature and deep processes of the lithospheric mantle. Cenozoic volcanic rocks in the western Qinling contain abundant mantle xenoliths and xenocrysts, which provide us an opportunity to probe the lithospheric mantle beneath this region and a new dimension to insight into geologic evolution. Cenozoic volcanic rocks (7-23 Ma) from the western Qinling are sparsely distributed in the Lixian-Dangchang-Xihe Counties, Gansu Province, China. Volcanic rocks contain plenty of mantle-derived xenoliths, including spinel lherzolites with subordinate wehrlite, dunite, olivine websterite, clinopyroxenite and garnet lherzolite, and few olivine, clinopyroxene and spinel xenocrysts. These peridotitic xenoliths show clear deformed textures and their major minerals show excellent orientation. Thus, these peridotites are typical deformed peridotites. Olivine xenocrysts have clearly-zoned textures. The peridotitic xenoliths can be divided into two groups based on their compositions, namely, the H-type and L-type. The H-type peridotites are characterized by high Fo (>90) in olivines in which fine-grained ones have higher Fo than the coarse grains, low CaO (<20 %) in clinopyroxenes, high Cr# (>40) in spinels and high equilibration temperatures. They may represent the refractory lithospheric mantle. In contrast, the L-type peridotites contain low Fo (<90) olivines (with lower Fo in fine-grained olivines), high CaO (>20 %) clinopyroxenes, low Cr# (<20) spinels and low equilibration temperatures. They experienced low degree of partial melting. The Cenozoic lithospheric mantle beneath the western Qinling was refractory in major element compositions based on the mineral compositions of xenoliths and xenocrysts and experienced complicated deep processes. The lithospheric mantle was modified by shear deformation due to the diapirism of asthenosphere and strong tectonic movements including the collision between North China Craton and Yangze Craton and the uplift of Tibetan Plateau, and then underwent metasomatism with a hydrous, Na, Ti and Cr enriched melt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The continent of eastern China, especially the North China Craton (NCC), has endured intensive tectonic renovation during Mesozoic and Cenozoic, with the presence of widespread magmatism, high heat flow and development of large sedimentary basins and mountain ranges. The cratonic lithosphere of the region has been destroyed remarkably, which is characterized by not only a significant reduction in thickness but also complex modifications in physical and chemical properties of the lithosphere. As for the tectonic regime controlling the evolution of the NCC, various models have been put forward, including the impingement of mantle plumes (“mushroom cloud” model), the collision of south China block and north China block, the subduction of the Pacific plate, etc. Lithosphere delamination and thermal erosion were proposed as the two end-member mechanisms of the lithospheric thinning. However, given the paucity of the data, deep structural evidence is currently still scarce for distinguishing and testifying these models. To better understand the deep structure of the NCC, from 2000 to the present, temporary seismic array observations have been conducted in the NCC by the Seismological Laboratory of the Institute of the Geology and Geophysics, Chinese Academy of Sciences under the North China Interior Structure Project (NCISP). Many arrays extend from the North China Craton and the off-craton regions, and traverse a lot of main tectonic boundaries. A total of more than 300 broadband seismic stations have been deployed along several profiles that traversed the major tectonic units within the craton’s interior, at the boundary areas and in the neighboring off-craton regions. These stations recorded abundant high-quality data, which provides an unprecedented opportunity for us to unravel the deep structural features of the NCC using seismological methods. Among all the seismological methods, the surface wave method appears to be an efficient and widely adopted technique in studying the crustal and upper mantle structures. In particular, it can provide the absolute values of S-wave velocity that are difficult to obtain with other methods. Benefiting from the deployment of dense seismic arrays, progresses have been made in improving the spatial resolution of surface wave imaging, which makes it possible to resolve the fine-scale velocity structures of the crust and upper mantle based on surface wave analysis. Meanwhile, the differences in the S-wave velocities derived from Rayleigh and Love wave data can provide information on the radial anisotropy beneath the seismic arrays. In this thesis, using the NCISP-III broadband data and based on phase velocity dispersion analysis and inversion of fundamental mode Rayleigh and Love waves, I investigated the lateral variations in the S-wave velocity structure of the crust and uppermost mantle beneath the Yanshan Belt and adjacent regions at the northeastern boundary of the NCC. Based on the constructed structural images, I discussed possible deep processes of the craton destruction in the study region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Tianshan Mountains is located about 1000-2000 km north of the India-Asia suture and is the most outstanding topography in central Asia, with transmeridional length of nearly 2500 km, north-southern wideness of ~ 300-500 km, peaks exceeding 7000 m above sea level (asl.), and average altitude of over 4000 m asl. Much of the modern relief of the Tianshan Range is a result of contraction driven by the collision of the India subcontinent with the southern margin of Asia, which began in early Tertiary and continues today. Understanding where, when and how the deformation of the Tianshan Mountains occurred is essential to decipher the mechanism of intracontinental tectonics, the process of foreland basin evolution and mountain building, and the history of climate change in central Asia. In order to better constrain the Cenozoic building history of the Tianshan Mountains and the climate change in the southern margin of the Junggar Basin, we carried out multiple studies of magnetostratigraphy, sedimentology, and stable isotopes of paleosol carbonate at the Jingou River section, which is located at the Huoerguosi anticline, the westernest one of the second folds and thrust faults zone in the northern piedmont of the Tianshan Mountains. The Jingou River section with a thickness of about 4160 m is continuous in deposits according to the observed gradual change in sedimentary environments and can be divided into five formations: Anjihaihe, Shawan, Taxihe, Dushanzi and Xiyu in upward sequence. Characteristic remamences were isolated by progressive thermal demagnetization, generally between 300 and 680℃. A total of 1133 out of 1607 samples yielded well-defined ChRMs and were used to establish the magnetostratigraphic column of a 3270-m-thick section from the exposed base of the Anjihaihe Formation to the middle of the Xiyu Formation. Two vertebrate fossil sites and a good correlation with the CK95 geomagnetic polarity time scale suggest that the section was deposited from ~30.5 to ~4.6 Ma and the age of the top of the Xiyu formation is ~2.6 Ma based on an extrapolation of the sedimentation rates. A plot of magnetostratigraphic age vs. height at the Jingou River section shows that significant increases in sedimentation rates as well as notable changes in depositional environments occurred at ~26-22.5 Ma, ~13-11 Ma and ~7 Ma, which represent the initial uplift of the Tianshan Mountains and two subsequent rapid uplift events. In addition, changes in sedimentation rates display characteristic alternations between increases and decreases, which probably indicate that the uplift of the Tianshan Mountains was episodic. We discussed the history of C4 biomass and climatic conditions in the southern margin of the Junggur Basin using the stable carbon and oxygen isotope composition of paleosol carbonates from the Jingou River section during ~17.5-6.5 Ma. The δ13C values indicate that the proportion of C4 biomass was uniform and moderate (15-20 %) during the interval of ~17.5-6.5 Ma. We proposed three hypotheses for this pattern of C4 biomass: (1) counteraction of two opposed factors (global cooling since ~15 Ma and thereafter increased dry and seasonality in central Asia) controlling the growth of C4 grasses, (2) variability in abundance of C3 grasses relative to C3 trees and shrubs if vegetation had ever changed in ecosystems, and (3) the higher latitude of the studied region. The δ18O values show a stepwise negative trend since ~13 Ma which may be attributed to three factors: (1) the temperature decreasing gradually after the middle Miocene (~15 Ma), (2) the increasing contribution of the moistures carried by the polar air masses from the Arctic Ocean to precipitation, and (3) the gradual retreat westward and disappearance of the Paratethys Ocean. Among them, which one played a more important role will need further study of the paleoclimate in central Asia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, thanks to the improvement of analytical methods and the use of MC-ICP-MS, Fe isotope can be measured precisely. Fe isotope shows considerable variation both in biological and inorganic processes (from low T to high T) in nature, Therefore, Fe isotope has become one of the exciting frontier sciences and has favorable prospects of the application to the geosciences and life sciences. Based on a comprehensive review of available references in the related field, this study focuses on the development of techniques for high-precision measurement of iron isotope using MC-ICP-MS, and application of the techniques developed to study the Fe isotopes as well as major and trace element compositions of minerals (Ol, Opx, Cpx and Sp) from spinel peridotitic xenoliths from Cenozoic alkaline basalts to investigate Fe isotopic features of the lithospheric mantle beneath the North China Craton. The minerals from these xenoliths are similar to those off-cratonic peridotites world-wide, but are remarkably different from those on-cratonic peridotites and clinopyroxenes from these spinel lherzolites exhibit two types of chondrite-normalized REE patterns i.e. LREE-depleted and flat or spoon-shaped. It is noted that total abundances of REE in clinopyroxenes from these peridotites show a broad negative correlation with Cr# numbers of Cpx and Sp. The Fe isotope results show that the spinel peridotitic xenoliths have small but distinguishable Fe isotopic variations in minerals (generally Ol < Opx < Cpx) and samples, and the isotopic range in spinel is relatively large. Positive linear relationship with the ε57Fecpx/ε57Feopx ratio close to one unit has been observed between Fe isotopes of coexistent Opx and Cpx, indicating that the Cpx and Opx have generally reached Fe isotopic equilibrium. However, Fe isotopes between the Ol and Sp show apparent disequilibrium. The broadly negative correlation between mineral Fe isotopes and oxygen fugacity (fo2), metasomatic indexes such as spinel Cr#, (La/Yb) N and (La/Sm) N ratios of clinopyroxenes suggest that Fe isotopic variations in different minerals and peridotites were probably produced by melt-peridotite interaction. This study further confirms the previous observation that the lithospheric mantle has distinguishable and heterogeneous Fe isotopic variations at a scale of xenoliths. Mantle metasomatism that induces the interaction of the lithospheric mantle peridotite with metasomatic agent is a most potential mechanism for the Fe isotope fractionation in mantle peridotites. Therefore, Fe isotope could be a new and powerful tool to probe the evolution of the lithospheric mantle. We also report mineral compositions, clinopyroxene trace element concentrations and Sr-Nd isotopes for newly-discovered phlogopite-bearing spinel lherzolite and olivine clinopyroxenite xenoliths from three different localities (Hannuoba, Hebei Province; Jining Sangyitang, Inner Mongolia; Hebi, Henan Province)of the North China Craton. Systematic comparisons with phlogopite-free spinel lherzolite xenolith from the same locality reveals that the phlogopite-bearing peridotitic xenoliths have relatively higher Al2O3, CaO, Na2O, K2O, TiO2 contents and lower MgO contents than those phogopite-free counterparts. The former also has higher LREE concentrations, but relatively less radiogenic Sr-Nd isotopic ratios. This demonstrates that mantle metasomatism can not only enrich the basaltic components and trace element concentrations, but also make a decrease in Mg# of the peridotites and olivines and a relative depletion in Sr-Nd isotopes. 87Rb/86Sr-87Sr/86Sr isochrons of the phlogopite-bearing xenoliths indicate that mantle metasomatism happened in the Mesozoic and/or Cenozoic time. The metasomatic agent was derived from the asthenosphere. The result also manifests that the widespread similarity of the geochemical features such as major and trace elements and isotopic compositions in the Cenozoic lithospheric mantle beneath the North China Craton to those “oceanic” lithospheric mantle could be as a result of the ubiquitous presence of the interaction between the old refractory peridotites and the infiltrated asthenospheric melt, rather than the actually newly-accreted lithospheric mantle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Beishan orogenic collage locates at the triple-joint among Xinjiang, Gansu, and Inner Mongolia Provinces, at which the Siberian, Tarim and North China plates join together. It also occupies the central segment of the southern Central Asian Orogenic Belt (CAOB). The main study area in the present suty focused on the southwest part of the Beishan Mountain, which can be subdivided into four units southernward, the Mazhongshan continental block, Huaniushan Arc, Liuyuan suture zone and Shibanshan-Daqishan Arc. 1. The Huaniushan Arc was formed by northernward dipping subduction from the Orcovician to Permian, in which volcanic rocks ranging from basic to acidic with island arc affinity were widely developed. The granitiod intrusions become smaller and younger southward, whichs indicates a southward rollback of slab. The granitiod intrusions are mainly composed of I type granites, and their geochemical compositions suggest that they have affinities of island arc settings. In the early Paleozoic(440Ma-390Ma). The Shibanshan-Daqishan Arc, however, were produced in the southernward dipping subduction system from Carboniferous to Permian. Volcanic rocks from basic to acidic rocks are typical calcic-alkaline rocks. The granitiod intrusions become smaller and younger northernward, indicating subdution with a northernward rollback. The granitiod intrusions mainly consist of I-type granites, of which geochemical data support they belong to island arc granite. 2. Two series of adakite intrusions and eruptive rocks have been discovered in the southern margin of the Huaniushan Island Arc. The older series formed during Silurian (441.7±2.5Ma) are gneiss granitoid. These adakite granites intruded the early Paleozoic Liuyuan accretionary complex, and have the same age as most of the granite intrusions in the Huanniushan Arc. Their geochemical compostions demonstrate that they were derived from partial melting of the subudcted oceanic slab. These characteristics indicate a young oceanic crust subduction in the early Paleozoic. The late stage adakites with compositons of dacites associate with Nb-enriched basalts, and island arc basalts and dacites. Their geochemistries demonstrate that the adakites are the products of subducted slab melts, whereas the Nb-enriched basalt is products of the mantle wedge which have metasomatized by adakite melts. Such a association indicates the existences of a young ocean slab subduction. 3. The Liuyuan suture zone is composed of late Paleozoic ophiolites and two series of accretionary complexes with age of early Paleozoic. The early Paleozoic accretionary complex extensively intruded by early Palozioc granites is composed of metamorphic clastics, marble, flysch, various metamorphic igneous rocks (ultramafic, mafic and dacite), and eclogite blocks, which are connected by faults. The original compositions of the rocks in this complex are highly varied, including MORB, E-MORB, arc rocks. Geochronological study indicates that they were formed during the Silurian (420.9±2.5Ma and 421.1±4.3Ma). Large-scale granitiods intruded in the accretionary complex suggest a fast growth effect at the south margin of the Huaniushan arc. During late Paleozoic, island arc were developed on this accretionary complex. The late Paleozoic ophiolite has an age of early Permian (285.7±2.2Ma), in which the rock assemblage includes ultra-mafic, gabbros, gabbros veins, massive basalts, pillow basalt, basaltic clastic breccias, and thin layer tuff, with chert on the top.These igneous rocks have both arc and MORB affinities, indicating their belonging to SSZ type ophiolite. Therefore, oceanic basins area were still existed in the Liuyuan area in the early Permian. 4. The mafic-ultramafic complexes are distributed along major faults, and composed of zoned cumulate rocks, in which peridotites are surrounded by pyroxenite, hornblendites, gabbros norite and diorite outward. They have island-arc affinities and are consistent with typical Alaska-type mafic-ultramafic complexes. The geochronological results indicate that they were formed in the early Permian. 5. The Liuyuan A-type granite were formed under post-collisional settings during the late Triassic (230.9±2.5Ma), indicating the persistence of orogenic process till the late Triassic in the study area. Geochronological results suggested that A-type granites become younger southward from the Wulungu A-type granite belt to Liuyuan A-type granite belt, which is in good agreement with the accretionary direction of the CAOB in this area, which indicate that the Liuyuan suture is the final sture of the Paleo-Asin Ocean. 6. Structural geological evidence demonstrate the W-E spreading of main tectonic terrenes. These terrenes had mainly underwent through S-N direction contraction and NE strike-faulting. The study area had experienced a S-N direction compression after the Permian, indicating a collisional event after the Permian. Based on the evidene from sedimentary geology, paleontology, and geomagnetism, our studies indicate that the orogenic process can be subdivided into five stages: (1) the pre-orogenic stage occurred before the Ordovicain; (2) the subduction orogenic stage occurred from the Orcovician to the Permian; (3) the collisional orogenic stage occurred from the late Permian to the late Triassic; (4) the post-collision stage occurred after the Triassic. The Liuyuan areas have a long and complex tectonic evolutional history, and the Liuyuan suture zone is one of the most important sutures. It is the finally suture zone of the paleo-Asian ocean in the Beishan area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Tarim Basin, extensive carbonates of Lower Paleozoic occur, in which thick Cambrian and Lower Ordovician dolostones are widespread and show a potential perspective in hydrocarbon exploration. So they are viewed as an important target for exploration. Tarim Basin is a poly phase composite basin, which underwent multiphase tectonic modification and volcanic activities; these exerted significant influences on the basin-fills and basin fluid evolution, thereby the diagenetic history, particularly on the deep-buried Lower Paleozoic dolostones. Referring to the classification of dolomite texture proposed by Gregg & Sibley (1984) and Sibley & Gregg (1987). In view of crystal size, crystal shape, crystal surface and contact relation, eight genetic textures of dolomite crystals are identified, based on careful petrographic examinatoins. These textures include: 1) micritic dolomite; 2) relict mimetic dolomite; 3)finely crystalline, planar-e(s), floating dolomite; 4)finely crystalline, planar-e(s) dolomite; 5) finely-coarse crystalline, nonplanar-a dolomite; 6)coarse crystalline, nonplanar saddle dolomite; 7) finely-medium crystalline, planar-e(s) dolomite cement; 8) coarse crystalline, nonplanar saddle dolomite cement, in which the former six textures occurs as in matrix, the latter two in the cements. Detailed geochemistry analysis is carried out on the basis of genetic textures of dolomite and related minerals such as quartz and calcite. The result showed that the calcite has the highest average content in Sr, which can be sorted into two groups; micritic dolomite has the highest average content in Sr among all kinds of dolomites; the REE patterns of all kinds of dolomites is similar to those of marine limestone samples. Saddle dolomite cement has δ13C values from -2.44‰ to 1.27‰ PDB, and δ18O values from -13.01‰ to -5.12‰ PDB, which partially overlap with those of matrix dolomite (δ13C values from -2.83‰ to 2.01‰ PDB, δ18O values from -10.63‰ to -0.85‰ PDB). Saddle dolomite cement has 87Sr/86Sr ratios from 0.7086 to 0.7104, which totally overlap with those of matrix dolomite (0.7084 ~ 0.7116). Compared with saddle dolomite derived from other basins all over the world, the saddle dolomites of Tarim Basin have similar δ13C, δ18O and 87Sr/86Sr ratios values with those of matrix dolomite. This scenario reflects the unusual geological setting and special dolomitizing liquid of Tarim Basin. The values of δ18O, δ13C and 87Sr/86Sr ratios of calcite also can be sorted out two groups, which may been resulted from the one stage of extensive uplift of Tarim Basin from Mesozoic to Cenozoic. Fluid inclusion microthermometry data of the diagenetic mineral indicates that matrix dolomite has relatively low homogenization temperatures (Th) of 80~105oC and salinities of 12.3% (wt% NaCl equivalent); saddle dolomite has highest Th values, which concentrate in 120~160oC and salinities of 13.5~23.7% (wt% NaCl equivalent); quartz has relatively low Th of 135~155oC and salinities of 17.8~22.5% (wt% NaCl equivalent); calcite has relatively low Th of 121~159.5oC and salinities of 1.4~17.5% (wt% NaCl equivalent). These data suggest that the saddle dolomites could have formed in thermal brine fluids. Based on comprehensive petrographical study, detailed geochemistry and fluid inclusion microthermometry analysis on Lower Paleozoic dolomite of Tarim Basin, three types of dolomitisation mechanism are proposed: Penecontemporaneous dolomitisation (Sabkha dolomitisation & Reflux dolomitisation); Burial dolomitisation (shallow-intermediate burial dolomitisation & Deep burial dolomitisation ); Hydrothermal cannibalized dolomitisation. In view of host-specified occurrences of hydrothermal dolomite, the low abundance of saddle dolomite and high geochemical similarities between saddle dolomite and host dolomite, as well as highest Th and high salinities , the hydrothermal dolomite in Tarim Basin is thus unique, which could have been precipitated in modified fluid in the host dolomite through intraformational thermal fluid cannibalization of Mg ions from the host. This scenario is different from the cases that large scale dolomitizing fluid migration took place along the fluid pathways where abundant saddle dolomite precipitated. Detailed observations on 180 petrographic and 60 casting thin sections show original pores in Lower Paleozoic dolomite were almost died out by complicated diagenetic process after a long time geologic evolution. On the other hand, deep-buried dolomite reservoirs is formed by tectonic and hydrothermal reforming on initial dolomites. Therefore, the distribution of structure-controlled hydrothermal dolomite reservoirs is predicted in Tabei and Tazhong Area of Tarim Basin based on the geophysical data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The petrology and geochemistry of peridotites entrained in Beiyan Cenozoic alkaline basalts within the middle segment of Tan-Lu fault zone and clinopyroxene megacrysts in the late Mesozoic and Cenozoic alkaline basaltic rocks from the North China Craton, have been systematically investigated. The main conclusions are obtained as follows. The peridotites entrained in alkaline basalts at Beiyan, Shandong Province, China are comprised of dominantly spinel lherzolites and spinel wehrlites with porphyroclastic, granuloblastic textures to resorption textures. The xenoliths are fertile in major element compositions (High CaO, TiO2, Low MgO, Cr2O3). The olivine Fo (= 100×Mg / (Mg+Fe) possesses a low and very large range of 81.0 to 91.0. The peridotites contain high percentages (Lherzolites: 10 - 19% in volume; Wehrlites: 24 - 28% in volume) of clinopyroxene with spongy textures. The Sr and Nd isotopic ratios of clinopyroxene separates from peridotites and pyroxenite xenoliths have a depleted and small range fall within the area of MORB, similar to newly-accreted lithospheric mantle. However, the appearance of many wehrlites and highly enriched LREE pattern suggest that this newly-accreted lithospheric mantle was considerably modified and reconstructed recently through the peridotite-asthenospheric melt interaction. The upwelling of asthenosphere from late Cretaceous to Eogene and upper mantle shearing of the Tan-Lu fault played an important role in the modification and reconstruction of the newly-accreted lithospheric mantle. The clinopyroxene megacrysts in the late Mesozoic and Cenozoic alkaline basaltic rocks from the eatern North China Craton are different in aspects of major elements, trace elements and isotopic composition. The characteristics of texture, mineral compositions and geochemistry as well as the Fe-Mg partitioning between the crystal and the melt indicates that the Al-augites in the Cenozoic basalts represent high-pressure crystallization products of alkaline basaltic melts. Thus, both of clinopyroxene megacrysts and host basalts could be derived from a same primitive magma. However, the Al-augites in the late Mesozoic basaltic rocks represent accidentally-included xenocrysts of basaltic components which had crystallized in the depth from a previously melting episode. The more depleted Sr-Nd isotopic compositions of Cenozoic megacrysts compared with those of host alkaline basalts and tholeiites demonstrate that even the alkali basalts could not completely represent primitive magma initiating in asthenosphere. That is to say, the Cenozoic alkaline basalts were more or less modified by some enriched Sr-Nd isotopic components during their eruption. Meanwhile, the tholeiites were not the products formed only by fractional crystallization of alkaline basaltic magma or different degrees of partial melting. It may result from the contribution of lithospheric mantle materials or crust contamination in magma chamber to alkali basaltic magmas.