981 resultados para Memory Impairment
Resumo:
BACKGROUND: Previous cross-sectional studies report that cognitive impairment is associated with poor psychosocial functioning in euthymic bipolar patients. There is a lack of long-term studies to determine the course of cognitive impairment and its impact on functional outcome. Method A total of 54 subjects were assessed at baseline and 6 years later; 28 had DSM-IV TR bipolar I or II disorder (recruited, at baseline, from a Lithium Clinic Program) and 26 were healthy matched controls. They were all assessed with a cognitive battery tapping into the main cognitive domains (executive function, attention, processing speed, verbal memory and visual memory) twice over a 6-year follow-up period. All patients were euthymic (Hamilton Rating Scale for Depression score lower than 8 and Young mania rating scale score lower than 6) for at least 3 months before both evaluations. At the end of follow-up, psychosocial functioning was also evaluated by means of the Functioning Assessment Short Test. RESULTS: Repeated-measures multivariate analysis of covariance showed that there were main effects of group in the executive domain, in the inhibition domain, in the processing speed domain, and in the verbal memory domain (p<0.04). Among the clinical factors, only longer illness duration was significantly related to slow processing (p=0.01), whereas strong relationships were observed between impoverished cognition along time and poorer psychosocial functioning (p<0.05). CONCLUSIONS: Executive functioning, inhibition, processing speed and verbal memory were impaired in euthymic bipolar out-patients. Although cognitive deficits remained stable on average throughout the follow-up, they had enduring negative effects on psychosocial adaptation of patients.
Resumo:
OBJECTIVES: The aim of this study was to investigate pathological mechanisms underlying brain tissue alterations in mild cognitive impairment (MCI) using multi-contrast 3 T magnetic resonance imaging (MRI). METHODS: Forty-two MCI patients and 77 healthy controls (HC) underwent T1/T2* relaxometry as well as Magnetization Transfer (MT) MRI. Between-groups comparisons in MRI metrics were performed using permutation-based tests. Using MRI data, a generalized linear model (GLM) was computed to predict clinical performance and a support-vector machine (SVM) classification was used to classify MCI and HC subjects. RESULTS: Multi-parametric MRI data showed microstructural brain alterations in MCI patients vs HC that might be interpreted as: (i) a broad loss of myelin/cellular proteins and tissue microstructure in the hippocampus (p ≤ 0.01) and global white matter (p < 0.05); and (ii) iron accumulation in the pallidus nucleus (p ≤ 0.05). MRI metrics accurately predicted memory and executive performances in patients (p ≤ 0.005). SVM classification reached an accuracy of 75% to separate MCI and HC, and performed best using both volumes and T1/T2*/MT metrics. CONCLUSION: Multi-contrast MRI appears to be a promising approach to infer pathophysiological mechanisms leading to brain tissue alterations in MCI. Likewise, parametric MRI data provide powerful correlates of cognitive deficits and improve automatic disease classification based on morphometric features.
Resumo:
Despite the overwhelming benefits of antiretroviral therapy (ART) in curtailing viral load in HIV-infected individuals, ART does not fully restore cellular and humoral immunity. HIV-infected individuals under ART show reduced responses to vaccination and infections and are unable to mount an effective antiviral immune response upon ART cessation. Many factors contribute to these defects, including persistent inflammation, especially in lymphoid tissues, where T follicular helper (Tfh) cells instruct and help B cells launch an effective humoral immune response. In this study we investigated the phenotype and function of circulating memory Tfh cells as a surrogate of Tfh cells in lymph nodes and found significant impairment of this cell population in chronically HIV-infected individuals, leading to reduced B cell responses. We further show that these aberrant memory Tfh cells exhibit an IL-2-responsive gene signature and are more polarized toward a Th1 phenotype. Treatment of functional memory Tfh cells with IL-2 was able to recapitulate the detrimental reprogramming. Importantly, this defect was reversible, as interfering with the IL-2 signaling pathway helped reverse the abnormal differentiation and improved Ab responses. Thus, reversible reprogramming of memory Tfh cells in HIV-infected individuals could be used to enhance Ab responses. Altered microenvironmental conditions in lymphoid tissues leading to altered Tfh cell differentiation could provide one explanation for the poor responsiveness of HIV-infected individuals to new Ags. This explanation has important implications for the development of therapeutic interventions to enhance HIV- and vaccine-mediated Ab responses in patients under ART.
Resumo:
Worldwide, the incidence of HIV-associated dementia has decreased However, the prevalence of HIV-associated neurocognitive disorders (HAND), mostly the milder forms, i.e. mild neurocognitve disorders (MND) and asymptomatic neurocognitive impairments (ANI) has increased in the combined antiretroviral therapy (cART) era. Indeed, 20% to 60% of well- treated HIV-infected patients, i.e. with undetectable HIV viremia, still present HAND in the cART era. HAND are characterized by psychomotor slowing, memory loss, and attention deficit. Possible explanations for this paradoxical phenomenon encompass: increased survival of HIV- infected patients thank to cART, low grade inflammation of the brain insufficient penetrance of antiretroviral drugs through the blood brain barrier (BBB), or on the contrary, toxic effect of some antiretroviral drugs. These somewhat contradictory hypotheses underline our poor understanding of HAND physiopathology. Here, we aim at determining whether the intrathecal synthesis of immunoglobulins G (IgG), hereafter referred as cerebrospinal fluid oligoclonal band (CSF OB), may help us in better understanding the immunopathogenesis of cognitive disorders. By analogy with other infection, such as syphilis or neuroborreliosis (9, 10), one can assume that, in the case of HIV-infected patients, the CSF OB are directed against HIV proteins (11). Nevertheless, in the case of HIV, the meaning of such CSF OB is unclear. Indeed, it is unknown whether this intrathecal inflammatory reaction is beneficial (viral control) or harmful (brain parenchyma destruction by the different inflammatory factors). Here, we looked at the association between CSF OB and cognitive disorders in HIV-infected patients, hypothesizing that if these CSF OB are protective, one should see an inverse correlation with the presence of cognitive disorders.
Resumo:
The identification of biomarkers of vascular cognitive impairment is urgent for its early diagnosis. The aim of this study was to detect and monitor changes in brain structure and connectivity, and to correlate them with the decline in executive function. We examined the feasibility of early diagnostic magnetic resonance imaging (MRI) to predict cognitive impairment before onset in an animal model of chronic hypertension: Spontaneously Hypertensive Rats. Cognitive performance was tested in an operant conditioning paradigm that evaluated learning, memory, and behavioral flexibility skills. Behavioral tests were coupled with longitudinal diffusion weighted imaging acquired with 126 diffusion gradient directions and 0.3 mm(3) isometric resolution at 10, 14, 18, 22, 26, and 40 weeks after birth. Diffusion weighted imaging was analyzed in two different ways, by regional characterization of diffusion tensor imaging (DTI) indices, and by assessing changes in structural brain network organization based on Q-Ball tractography. Already at the first evaluated times, DTI scalar maps revealed significant differences in many regions, suggesting loss of integrity in white and gray matter of spontaneously hypertensive rats when compared to normotensive control rats. In addition, graph theory analysis of the structural brain network demonstrated a significant decrease of hierarchical modularity, global and local efficacy, with predictive value as shown by regional three-fold cross validation study. Moreover, these decreases were significantly correlated with the behavioral performance deficits observed at subsequent time points, suggesting that the diffusion weighted imaging and connectivity studies can unravel neuroimaging alterations even overt signs of cognitive impairment become apparent.
Resumo:
The main focus of the present thesis was at verbal episodic memory processes that are particularly vulnerable to preclinical and clinical Alzheimer’s disease (AD). Here these processes were studied by a word learning paradigm, cutting across the domains of memory and language learning studies. Moreover, the differentiation between normal aging, mild cognitive impairment (MCI) and AD was studied by the cognitive screening test CERAD. In study I, the aim was to examine how patients with amnestic MCI differ from healthy controls in the different CERAD subtests. Also, the sensitivity and specificity of the CERAD screening test to MCI and AD was examined, as previous studies on the sensitivity and specificity of the CERAD have not included MCI patients. The results indicated that MCI is characterized by an encoding deficit, as shown by the overall worse performance on the CERAD Wordlist learning test compared with controls. As a screening test, CERAD was not very sensitive to MCI. In study II, verbal learning and forgetting in amnestic MCI, AD and healthy elderly controls was investigated with an experimental word learning paradigm, where names of 40 unfamiliar objects (mainly archaic tools) were trained with or without semantic support. The object names were trained during a 4-day long period and a follow-up was conducted one week, 4 weeks and 8 weeks after the training period. Manipulation of semantic support was included in the paradigm because it was hypothesized that semantic support might have some beneficial effects in the present learning task especially for the MCI group, as semantic memory is quite well preserved in MCI in contrast to episodic memory. We found that word learning was significantly impaired in MCI and AD patients, whereas forgetting patterns were similar across groups. Semantic support showed a beneficial effect on object name retrieval in the MCI group 8 weeks after training, indicating that the MCI patients’ preserved semantic memory abilities compensated for their impaired episodic memory. The MCI group performed equally well as the controls in the tasks tapping incidental learning and recognition memory, whereas the AD group showed impairment. Both the MCI and the AD group benefited less from phonological cueing than the controls. Our findings indicate that acquisition is compromised in both MCI and AD, whereas long13 term retention is not affected to the same extent. Incidental learning and recognition memory seem to be well preserved in MCI. In studies III and IV, the neural correlates of naming newly learned objects were examined in healthy elderly subjects and in amnestic MCI patients by means of positron emission tomography (PET) right after the training period. The naming of newly learned objects by healthy elderly subjects recruited a left-lateralized network, including frontotemporal regions and the cerebellum, which was more extensive than the one related to the naming of familiar objects (study III). Semantic support showed no effects on the PET results for the healthy subjects. The observed activation increases may reflect lexicalsemantic and lexical-phonological retrieval, as well as more general associative memory mechanisms. In study IV, compared to the controls, the MCI patients showed increased anterior cingulate activation when naming newly learned objects that had been learned without semantic support. This suggests a recruitment of additional executive and attentional resources in the MCI group.
Resumo:
Alzheimer`s disease (AD) is characterised neuropathologically by the presence of extracellular amyloid plaques, intraneuronal neurofibrillary tangles, and cerebral neuronal loss. The pathological changes in AD are believed to start even decades before clinical symptoms are detectable. AD gradually affects episodic memory, cognition, behaviour and the ability to perform everyday activities. Mild cognitive impairment (MCI) represents a transitional state between normal aging and dementia disorders, especially AD. The predictive accuracy of the current and commonly used MCI criteria devide this disorder into amnestic (aMCI) and non-amnestic (naMCI) MCI. It seems that many individuals with aMCI tend to convert to AD. However many MCI individuals will remain stable and some may even recover. At present, the principal drugs for the treatment of AD provide only symptomatic and palliative benefits. Safe and effective mechanism-based therapies are needed for this devastating neurodegenerative disease of later life. In conjunction with the development of new therapeutic drugs, tools for early detection of AD would be important. In future one of the challenges will be to detect at an early stage these MCI individuals who will convert to AD. Methods which can predict which MCI subjects will convert to AD will be much more important if the new drug candidates prove to have disease-arresting or even disease–slowing effects. These types of drugs are likely to have the best efficacy if administered in the early or even in the presymptomatic phase of the disease when the synaptic and neuronal loss has not become too widespread. There is no clinical method to determine with certainly which MCI individuals will progress to AD. However there are several methods which have been suggested as predictors of conversion to AD, e.g. increased [11C] PIB uptake, hippocampal atrophy in MRI, low CSF A beta 42 level, high CSF tau-protein level, apolipoprotein E (APOE) ε4 allele and impairment in episodic memory and executive functions. In the present study subjects with MCI appear to have significantly higher [11C] PIB uptake vs healthy elderly in several brain areas including frontal cortex, the posterior cingulate, the parietal and lateral temporal cortices, putamen and caudate. Also results from this PET study indicate that over time, MCI subjects who display increased [11C] PIB uptake appear to be significantly more likely to convert to AD than MCI subjects with negative [11C] PIB retention. Also hippocampal atrophy seems to increase in MCI individuals clearly during the conversion to AD. In this study [11C] PIB uptake increases early and changes relatively little during the AD process whereas there is progressive hippocampal atrophy during the disease. In addition to increased [11C] PIB retention and hippocampal atrophy, the status of APOE ε4 allele might contribute to the conversion from MCI to AD.
Resumo:
Parkinson’s disease (PD) is the second most common neurodegenerative disorder. It is characterized by a severe loss of substantia nigra dopaminergic neurons leading to dopamine depletion in the striatum. PD affects movement, producing motor symptoms such as rigidity, tremor and bradykinesia. Non-motor symptoms include autonomic dysfunction, neurobehavioral problems and cognitive impairment, which may lead to dementia. The pathophysiological basis of cognitive impairment and dementia in PD is unclear. The aim of this thesis was to study the pathophysiological basis of cognitive impairment and dementia in PD. We evaluated the relation between frontostriatal dopaminergic dysfunction and the cognitive symptoms in PD patients with [18F]Fdopa PET. We also combined [C]PIB and [18F]FDG PET and magnetic resonance imaging in PD patients with and without dementia. In addition, we analysed subregional striatal [18F]Fdopa PET data to find out whether a simple ratio approach would reliably separate PD patients from healthy controls. The impaired dopaminergic function of the frontostriatal regions was related to the impairment in cognitive functions, such as memory and cognitive processing in PD patients. PD patients with dementia showed an impaired glucose metabolism but not amyloid deposition in the cortical brain regions, and the hypometabolism was associated with the degree of cognitive impairment. PD patients had atrophy, both in the prefrontal cortex and in the hippocampus, and the hippocampal atrophy was related to impaired memory. A single 15-min scan 75 min after a tracer injection seemed to be sufficient for separating patients with PD from healthy controls in a clinical research environment. In conclusion, the occurrence of cognitive impairment and dementia in PD seems to be multifactorial and relates to changes, such as reduced dopaminergic activity, hypometabolism, brain atrophy and rarely to amyloid accumulation.
Resumo:
We investigated the effects of hippocampal lesions with ibotenic acid (IBO) on the memory of the sound-context-shock association during reexposure to the conditioning context. Twenty-nine adult pigeons were assigned to a non-lesioned control group (CG, N = 7), a sham-lesioned group (SG, N = 7), a hippocampus-lesioned experimental group (EG, N = 7), and to an unpaired nonlesioned group (tone-alone exposure) (NG, N = 8). All pigeons were submitted to a 20-min session in the conditioning chamber with three associations of sound (1000 Hz, 85 dB, 1 s) and shock (10 mA, 1 s). Experimental and sham lesions were performed 24 h later (EG and SG) when EG birds received three bilateral injections (anteroposterior (A), 4.5, 5.25 and 7.0) of IBO (1 µl and 1 µg/µl) and SG received one bilateral injection (A, 5.25) of PBS. The animals were reexposed to the training context 5 days after the lesion. Behavior was videotaped for 20 min and analyzed at 30-s intervals. A significantly higher percent rating of immobility was observed for CG (median, 95.1; range, 79.2 to 100.0) and SG (median, 90.0; range, 69.6 to 95.0) compared to EG (median, 11.62; range, 3.83 to 50.1) and NG (median, 7.33; range, 6.2 to 28.1) (P<0.001) in the training context. These results suggest impairment of contextual fear in birds who received lesions one day after conditioning and a role for the hippocampus in the modulation of emotional aversive memories in pigeons.
Resumo:
Permanent bilateral occlusion of the common carotid arteries (2VO) in the rat has been established as a valid experimental model to investigate the effects of chronic cerebral hypoperfusion on cognitive function and neurodegenerative processes. Our aim was to compare the cognitive and morphological outcomes following the standard 2VO procedure, in which there is concomitant artery ligation, with those of a modified protocol, with a 1-week interval between artery occlusions to avoid an abrupt reduction of cerebral blood flow, as assessed by animal performance in the water maze and damage extension to the hippocampus and striatum. Male Wistar rats (N = 47) aged 3 months were subjected to chronic hypoperfusion by permanent bilateral ligation of the common carotid arteries using either the standard or the modified protocol, with the right carotid being the first to be occluded. Three months after the surgical procedure, rat performance in the water maze was assessed to investigate long-term effects on spatial learning and memory and their brains were processed in order to estimate hippocampal volume and striatal area. Both groups of hypoperfused rats showed deficits in reference (F(8,172) = 7.0951, P < 0.00001) and working spatial memory [2nd (F(2,44) = 7.6884, P < 0.001), 3rd (F(2,44) = 21.481, P < 0.00001) and 4th trials (F(2,44) = 28.620, P < 0.0001)]; however, no evidence of tissue atrophy was found in the brain structures studied. Despite similar behavioral and morphological outcomes, the rats submitted to the modified protocol showed a significant increase in survival rate, during the 3 months of the experiment (P < 0.02).
Resumo:
This study investigated the effects of histamine H1 or H2 receptor antagonists on emotional memory consolidation in mice submitted to the elevated plus maze (EPM). The cerebellar vermis of male mice (Swiss albino) was implanted using a cannula guide. Three days after recovery, behavioral tests were performed in the EPM on 2 consecutive days (T1 and T2). Immediately after exposure to the EPM (T1), animals received a microinjection of saline (SAL) or the H1 antagonist chlorpheniramine (CPA; 0.016, 0.052, or 0.16 nmol/0.1 µL) in Experiment 1, and SAL or the H2 antagonist ranitidine (RA; 0.57, 2.85, or 5.7 nmol/0.1 µL) in Experiment 2. Twenty-four hours later, mice were reexposed to the EPM (T2) under the same experimental conditions but they did not receive any injection. Data were analyzed using one-way ANOVA and the Duncan test. In Experiment 1, mice microinjected with SAL and with CPA entered the open arms less often (%OAE) and spent less time in the open arms (%OAT) in T2, and there was no difference among groups. The results of Experiment 2 demonstrated that the values of %OAE and %OAT in T2 were lower compared to T1 for the groups that were microinjected with SAL and 2.85 nmol/0.1 µL RA. However, when animals were microinjected with 5.7 nmol/0.1 µL RA, they did not show a reduction in %OAE and %OAT. These results demonstrate that CPA did not affect behavior at the doses used in this study, while 5.7 nmol/0.1 µL RA induced impairment of memory consolidation in the EPM.
Resumo:
There is much evidence to support an age-related decline in source memory ability. However, the underlying mechanisms responsible for this decline are not well understood. The current study was carried out to determine the electrophysiological correlates of source memory discrimination in younger and older adults. Event-related potentials (ERPs) and continuous electrocardiographic (ECG) data were collected from younger (M= 21 years) and older (M= 71 years) adults during a source memory task. Older adults were more likely to make source memory errors for recently repeated, non-target words than were younger adults. Moreover, their ERP records for correct trials showed an increased amplitude in the late positive (LP) component (400-800 msec) for the most recently presented, non-target stimuli relative to the LP noted for target items. Younger adults showed an opposite pattern, with a large LP component for target items, and a much smaller LP component for the recently repeated non-target items. Computation of parasympathetic activity in the vagus nerve was performed on the ECG data (Porges, 1985). The resulting measure, vagal tone, was used as an index of physiological responsivity. The vagal tone index of physiological responsivity was negatively related to the LP amplitude for the most recently repeated, non-target words in both groups, after accounting for age effects. The ERP data support the hypothesis that the tendency to make source memory errors on the part of older adults is related to the ability to selectively control attentional processes during task performance. Furthermore, the relationship between vagal tone and ERP reactivity suggests that there is a physiological basis to the heightened reactivity measured in the LP response to recently repeated non-target items such that, under decreased physiological resources, there is an impairment in the ability to selectively inhibit bottom-up, stimulus based properties in favour of task-related goals in older adults. The inconsistency of these results with other explanatory models of source memory deficits is discussed. It is concluded that the data are consistent with a physiological reactivity model requiring inhibition of reactivity to irrelevant, but perceptually-fluent, stimuli.
Resumo:
Exposure to chronic stress can alter the structure and function of brain regions involved in learning and memory, and these effects are typically long-lasting if the stress occurs during sensitive periods of development. Until recently, adolescence has received relatively little attention as a sensitive period of development, despite marked changes in behaviour, heightened reactivity to stressors, and cognitive and neural maturation. Therefore, the purpose of the present study was to investigate the long-term effects of chronic stress in adolescence on two spatial learning and memory tasks (Morris water maze and Spatial Object Location test) and on a working memory task (Delayed Alternation task). Male rats were randomly assigned to chronic social instability stress (SS; daily 1 hour isolation and subsequent change of cage partner between postnatal days 30 and 45) or to a no-stress control group (CTL). During acquisition learning in the Morris water maze task, SS rats demonstrated impaired long-term memory for the location of the hidden escape platform compared to CTL rats, although the impairment was only seen after the first day of training. Similarly, SS rats had impaired long-term memory in the Spatial Object Location test after a long delay (240 minutes), but not after shorter delays (15 or 60 minutes) compared to CTL rats. On the Delayed Alternation task, which assessed working memory across delays ranging from 5 to 90 seconds, no group differences were observed. These results are partially in line with previous research that revealed adult impairment on spatial learning and memory tasks after exposure to chronic social instability stress in adolescence. The observed deficits, however, appear to be limited to long-term memory as no group differences were observed during brief periods of retention.
Resumo:
Background: The 16/6-idiotype (16/6-Id) of the human anti-DNA antibody was found to induce experimental lupus in naive mice, manifested by production of autoantibodies, leukopenia and elevated inflammatory markers, as well as kidney and brain involvement. We assessed behavior and brain pathology of naive mice injected intracerebra-ventricularly (ICV) with the 16/6-Id antibody. Methods: C3H female mice were injected ICV to the right hemisphere with the human 16/6-Id antibody or commercial human IgG antibodies (control). The mice were tested for depression by the forced swimming test (FST), locomotor and explorative activity by the staircase test, and cognitive functions were examined by the novel object recognition and Y-maze tests. Brain slices were stained for inflammatory processes. Results: 16/6-Id injected mice were cognitively impaired as shown by significant differences in the preference for a new object in the novel object recognition test compared to controls (P = 0.012). Similarly, the preference for spatial novelty in the Y-maze test was significantly higher in the control group compared to the 16/6-Id-injected mice (42% vs. 9%, respectively, P = 0.065). Depression-like behavior and locomotor activity were not significantly different between the16/6-Id-injected and the control mice. Immunohistochemistry analysis revealed an increase in astrocytes and microglial activation in the hippocampus and amygdala, in the 16/6-Id injected group compared to the control. Conclusions: Passive transfer of 16/6-Id antibodies directly into mice brain resulted in cognitive impairments and histological evidence for brain inflammation. These findings shed additional light on the diverse mosaic pathophysiology of neuropsychiatric lupus.
Resumo:
Background: Impairments in explicit memory have been observed in Holocaust survivors with posttraumatic stress disorder. Methods: To evaluate which memory components are preferentially affected, the California Verbal Learning Test was administered to Holocaust survivors with (n = 36) and without (n = 26) posttraumatic stress disorder, and subjects not exposed to the Holocaust (n = 40). Results: Posttraumatic stress disorder subjects showed impairments in learning and short-term and delayed retention compared to nonexposed subjects; survivors without posttraumatic stress disorder did not. Impairments in learning, but not retention, were retained after controlling fir intelligence quotient. Older age was associated with poorer learning and memory performance in the posttraumatic stress disorder group only. Conclusions: The most robust impairment observed in posttraumatic stress disorder was in verbal learning, which may be a risk factor for or consequence of chronic posttraumatic stress disorder. The negative association between performance and age may reflect accelerated cognitive decline in posttraumatic stress disorder.