918 resultados para Medical technology
Resumo:
BACKGROUND: The prevalence of protein-energy malnutrition in older adults is reported to be as high as 60% and is associated with poor health outcomes. Inadequate feeding assistance and mealtime interruptions may contribute to malnutrition and poor nutritional intake during hospitalisation. Despite being widely implemented in practice in the United Kingdom and increasingly in Australia, there have been few studies examining the impact of strategies such as Protected Mealtimes and dedicated feeding assistant roles on nutritional outcomes of elderly inpatients. AIMS: The aim of this research was to implement and compare three system-level interventions designed to specifically address mealtime barriers and improve energy intakes of medical inpatients aged ≥65 years. This research also aimed to evaluate the sustainability of any changes to mealtime routines six months post-intervention and to gain an understanding of staff perceptions of the post-intervention mealtime experience. METHODS: Three mealtime assistance interventions were implemented in three medical wards at Royal Brisbane and Women's Hospital: AIN-only: Additional assistant-in-nursing (AIN) with dedicated nutrition role. PM-only: Multidisciplinary approach to meals, including Protected Mealtimes. PM+AIN: Combined intervention: AIN + multidisciplinary approach to meals. An action research approach was used to carefully design and implement the three interventions in partnership with ward staff and managers. Significant time was spent in consultation with staff throughout the implementation period to facilitate ownership of the interventions and increase likelihood of successful implementation. A pre-post design was used to compare the implementation and nutritional outcomes of each intervention to a pre-intervention group. Using the same wards, eligible participants (medical inpatients aged ≥65 years) were recruited to the preintervention group between November 2007 and March 2008 and to the intervention groups between January and June 2009. The primary nutritional outcome was daily energy and protein intake, which was determined by visually estimating plate waste at each meal and mid-meal on Day 4 of admission. Energy and protein intakes were compared between the pre and post intervention groups. Data were collected on a range of covariates (demographics, nutritional status and known risk factors for poor food intake), which allowed for multivariate analysis of the impact of the interventions on nutritional intake. The provision of mealtime assistance to participants and activities of ward staff (including mealtime interruptions) were observed in the pre-intervention and intervention groups, with staff observations repeated six months post-intervention. Focus groups were conducted with nursing and allied health staff in June 2009 to explore their attitudes and behaviours in response to the three mealtime interventions. These focus group discussions were analysed using thematic analysis. RESULTS: A total of 254 participants were recruited to the study (pre-intervention: n=115, AIN-only: n=58, PM-only: n=39, PM+AIN: n=42). Participants had a mean age of 80 years (SD 8), and 40% (n=101) were malnourished on hospital admission, 50% (n=108) had anorexia and 38% (n=97) required some assistance at mealtimes. Occasions of mealtime assistance significantly increased in all interventions (p<0.01). However, no change was seen in mealtime interruptions. No significant difference was seen in mean total energy and protein intake between the preintervention and intervention groups. However, when total kilojoule intake was compared with estimated requirements at the individual level, participants in the intervention groups were more likely to achieve adequate energy intake (OR=3.4, p=0.01), with no difference noted between interventions (p=0.29). Despite small improvements in nutritional adequacy, the majority of participants in the intervention groups (76%, n=103) had inadequate energy intakes to meet their estimated energy requirements. Patients with cognitive impairment or feeding dependency appeared to gain substantial benefit from mealtime assistance interventions. The increase in occasions of mealtime assistance by nursing staff during the intervention period was maintained six-months post-intervention. Staff focus groups highlighted the importance of clearly designating and defining mealtime responsibilities in order to provide adequate mealtime care. While the purpose of the dedicated feeding assistant was to increase levels of mealtime assistance, staff indicated that responsibility for mealtime duties may have merely shifted from nursing staff to the assistant. Implementing the multidisciplinary interventions empowered nursing staff to "protect" the mealtime from external interruptions, but further work is required to empower nurses to prioritise mealtime activities within their own work schedules. Staff reported an increase in the profile of nutritional care on all wards, with additional non-nutritional benefits noted including improved mobility and functional independence, and better identification of swallowing difficulties. IMPLICATIONS: The PhD research provides clinicians with practical strategies to immediately introduce change to deliver better mealtime care in the hospital setting, and, as such, has initiated local and state-wide roll-out of mealtime assistance programs. Improved nutritional intakes of elderly inpatients was observed; however given the modest effect size and reducing lengths of hospital stays, better nutritional outcomes may be achieved by targeting the hospital-to-home transition period. Findings from this study suggest that mealtime assistance interventions for elderly inpatients with cognitive impairment and/or functional dependency show promise.
Resumo:
Aims The Medical Imaging Training Immersive Environment (MITIE) system is a recently developed virtual reality (VR) platform that allows students to practice a range of medical imaging techniques. The aim of this pilot study was to harvest user feedback about the educational value of the application and inform future pedagogical development. This presentation explores the use of this technology for skills training and blurring the boundaries between academic learning and clinical skills training. Background MITIE is a 3D VR environment that allows students to manipulate a patient and radiographic equipment in order to produce a VR-generated image for comparison with a gold standard. As with VR initiatives in other health disciplines (1-6) the software mimics clinical practice as much as possible and uses 3D technology to enhance immersion and realism. The software was developed by the Medical Imaging Course Team at a provider University with funding from a Health Workforce Australia “Simulated Learning Environments” grant. Methods Over 80 students undertaking the Bachelor of Medical Imaging Course were randomised to receive practical experience with either MITIE or radiographic equipment in the medical radiation laboratory. Student feedback about the educational value of the software was collected and performance with an assessed setup was measured for both groups for comparison. Ethical approval for the project was provided by the university ethics panel. Results This presentation provides qualitative analysis of student perceptions relating to satisfaction, usability and educational value as well as comparative quantitative performance data. Students reported high levels of satisfaction and both feedback and assessment results confirmed the application’s significance as a pre-clinical training tool. There was a clear emerging theme that MITIE could be a useful learning tool that students could access to consolidate their clinical learning, either during their academic timetables or their clinical placement. Conclusion Student feedback and performance data indicate that MITIE has a valuable role to play in the clinical skills training for medical imaging students both in the academic and the clinical environment. Future work will establish a framework for an appropriate supporting pedagogy that can cross the boundary between the two environments. This project was possible due to funding made available by Health Workforce Australia.
Resumo:
Advances in medical science have presented both law and bioethics with some of the most fascinating questions of our time. As science continues to forge ahead into new frontiers, in fields such as reproductive technology, human genetics, cloning technologies, and stem cell research, questions have arisen over the role for law in regulating this new terrain. The speed with which medical science has advanced, and continues to advance, can make it difficult to formulate appropriate regulatory responses. The rapid pace of scientific change and the increasing complexity of the science can present hurdles and barriers to the engagement of the public with science and the legal and ethical issues raised by it.
Resumo:
Dealing with digital medical images is raising many new security problems with legal and ethical complexities for local archiving and distant medical services. These include image retention and fraud, distrust and invasion of privacy. This project was a significant step forward in developing a complete framework for systematically designing, analyzing, and applying digital watermarking, with a particular focus on medical image security. A formal generic watermarking model, three new attack models, and an efficient watermarking technique for medical images were developed. These outcomes contribute to standardizing future research in formal modeling and complete security and computational analysis of watermarking schemes.
Resumo:
The use of Portable Medical Devices (PMDs) has become increasingly widespread over the last few years. A combination of factors; including advances in technology, the pressure to reduce public health costs and the desire to make health solutions accessible to a wider patient base are contributing to the growth in the PMD market. Design has a clear role to play in the current and future context of the PMD landscape. In this paper, we identify emerging trends in the design of PMDs; including changes in the form, purpose and mode of use, and explore how these trends are likely to fundamentally impact the nature of healthcare and the patient experience from an experience design perspective. We conclude by identifying a research opportunity for design within the healthcare and PMD context.
Resumo:
Introduction A novel realistic 3D virtual reality (VR) application has been developed to allow medical imaging students at Queensland University of Technology to practice radiographic techniques independently outside the usual radiography laboratory. Methods A flexible agile development methodology was used to create the software rapidly and effectively. A 3D gaming environment and realistic models were used to engender presence in the software while tutor-determined gold standards enabled students to compare their performance and learn in a problem-based learning pedagogy. Results Students reported high levels of satisfaction and perceived value and the software enabled up to 40 concurrent users to prepare for clinical practice. Student feedback also indicated that they found 3D to be of limited value in the desktop version compared to the usual 2D approach. A randomised comparison between groups receiving software-based and traditional practice measured performance in a formative role play with real equipment. The results of this work indicated superior performance with the equipment for the VR trained students (P = 0.0366) and confirmed the value of VR for enhancing 3D equipment-based problem-solving skills. Conclusions Students practising projection techniques virtually performed better at role play assessments than students practising in a traditional radiography laboratory only. The application particularly helped with 3D equipment configuration, suggesting that teaching 3D problem solving is an ideal use of such medical equipment simulators. Ongoing development work aims to establish the role of VR software in preparing students for clinical practice with a range of medical imaging equipment.
Resumo:
An increasing amount of people seek health advice on the web using search engines; this poses challenging problems for current search technologies. In this paper we report an initial study of the effectiveness of current search engines in retrieving relevant information for diagnostic medical circumlocutory queries, i.e., queries that are issued by people seeking information about their health condition using a description of the symptoms they observes (e.g. hives all over body) rather than the medical term (e.g. urticaria). This type of queries frequently happens when people are unfamiliar with a domain or language and they are common among health information seekers attempting to self-diagnose or self-treat themselves. Our analysis reveals that current search engines are not equipped to effectively satisfy such information needs; this can have potential harmful outcomes on people’s health. Our results advocate for more research in developing information retrieval methods to support such complex information needs.
Resumo:
Aims: The Medical Imaging Training Immersive Environment(MITIE) Computed Tomography(CT) system is an innovative virtual reality (VR) platform that allows students to practice a range of CT techniques. The aim of this pilot study was to harvest user feedback about the educational value of teh application and inform future pedagogical development. This presentation explores the use of this technology for skills training. Background: MITIE CT is a 3D VR environment that allows students to position a patient,and set CT technical parameters including IV contrast dose and dose rate. As with VR initiatives in other health disciplines the software mimics clinical practice as much as possible and uses 3D technology to enhance immersion and realism. The software is new and was developed by the Medical Imaging Course Team at a provider University with funding from a Health Workforce Australia 'Simulated Learning Environments' grant Methods: Current third year medical imaging students were provided with additional 1 hour MITIE laboratory tutorials and studnet feedback was collated with regard to educational value and performance. Ethical approval for the project was provided by the university ethics panel Results: This presentation provides qualitative analysis of student perceptions relating to satisfaction, usability and educational value. Students reported high levels of satisfaction and both feedback and assessment results confirmed the application's significance as a pre-clinical tool. There was a clear emerging theme that MITIE could be a useful learning tool that students could access to consolidate their clinical learning, either on campus or during their clinical placement. Conclusion: Student feedback indicates that MITIE CT has a valuable role to play in the clinial skills training for medical imaging students both in the academic and clinical environment. Future work will establish a framework for an appropriate supprting pedagogy that can cross the boundary between the two environments
Resumo:
Background As the increasing adoption of information technology continues to offer better distant medical services, the distribution of, and remote access to digital medical images over public networks continues to grow significantly. Such use of medical images raises serious concerns for their continuous security protection, which digital watermarking has shown great potential to address. Methods We present a content-independent embedding scheme for medical image watermarking. We observe that the perceptual content of medical images varies widely with their modalities. Recent medical image watermarking schemes are image-content dependent and thus they may suffer from inconsistent embedding capacity and visual artefacts. To attain the image content-independent embedding property, we generalise RONI (region of non-interest, to the medical professionals) selection process and use it for embedding by utilising RONI’s least significant bit-planes. The proposed scheme thus avoids the need for RONI segmentation that incurs capacity and computational overheads. Results Our experimental results demonstrate that the proposed embedding scheme performs consistently over a dataset of 370 medical images including their 7 different modalities. Experimental results also verify how the state-of-the-art reversible schemes can have an inconsistent performance for different modalities of medical images. Our scheme has MSSIM (Mean Structural SIMilarity) larger than 0.999 with a deterministically adaptable embedding capacity. Conclusions Our proposed image-content independent embedding scheme is modality-wise consistent, and maintains a good image quality of RONI while keeping all other pixels in the image untouched. Thus, with an appropriate watermarking framework (i.e., with the considerations of watermark generation, embedding and detection functions), our proposed scheme can be viable for the multi-modality medical image applications and distant medical services such as teleradiology and eHealth.
Resumo:
Asoftware-based environment was developed to provide practical training in medical radiation principles and safety. The Virtual Radiation Laboratory application allowed students to conduct virtual experiments using simulated diagnostic and radiotherapy X-ray generators. The experiments were designed to teach students about the inverse square law, half value layer and radiation protection measures and utilised genuine clinical and experimental data. Evaluation of the application was conducted in order to ascertain the impact of the software on students’ understanding, satisfaction and collaborative learning skills and also to determine potential further improvements to the software and guidelines for its continued use. Feedback was gathered via an anonymous online survey consisting of a mixture of Likert-style questions and short answer open questions. Student feedback was highly positive with 80 % of students reporting increased understanding of radiation protection principles. Furthermore 72 % enjoyed using the software and 87 %of students felt that the project facilitated collaboration within small groups. The main themes arising in the qualitative feedback comments related to efficiency and effectiveness of teaching, safety of environment, collaboration and realism. Staff and students both report gains in efficiency and effectiveness associated with the virtual experiments. In addition students particularly value the visualisation of ‘‘invisible’’ physical principles and increased opportunity for experimentation and collaborative problembased learning. Similar ventures will benefit from adopting an approach that allows for individual experimentation while visualizing challenging concepts.
Resumo:
Progression of spinal deformity in children was studied with Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) to identify how gravity affects the deformity and to determine the full three-dimensional character of the deformity. The CT study showed that gravity is significant in deformity progression in some patients which has implications for clinical patient management. The world first MRI study showed that the standard clinical measure used to define the extent of the deformity is inadequate and further use of three-dimensional MRI should be considered by spinal surgeons.
Resumo:
This project was the first national study of the health and wellbeing of medical students in Vietnam. Data from over 2,000 students from eight universities indicate that, while the majority are healthy, significant proportions have poor mental and/or physical health and other life adversities. For many students, heavy academic demands were not a major stressor; rather, difficulties within their family, interpersonal relations, dissatisfaction with career choice and housing and financial problems appear to cause the most strain. This study provides evidence that will be useful for the development of professional counseling services in Vietnamese universities.
Resumo:
Accurate patient positioning is vital for improved clinical outcomes for cancer treatments using radiotherapy. This project has developed Mega Voltage Cone Beam CT using a standard medical linear accelerator to allow 3D imaging of the patient position at treatment time with no additional hardware required. Providing 3D imaging functionality at no further cost allows enhanced patient position verification on older linear accelerators and in developing countries where access to new technology is limited.