962 resultados para Maximum independent set
Resumo:
Embedded real-time systems often have to support the embedding system in very different and changing application scenarios. An aircraft taxiing, taking off and in cruise flight is one example. The different application scenarios are reflected in the software structure with a changing task set and thus different operational modes. At the same time there is a strong push for integrating previously isolated functionalities in single-chip multicore processors. On such multicores the behavior of the system during a mode change, when the systems transitions from one mode to another, is complex but crucial to get right. In the past we have investigated mode change in multiprocessor systems where a mode change requires a complete change of task set. Now, we present the first analysis which considers mode changes in multicore systems, which use global EDF to schedule a set of mode independent (MI) and mode specific (MS) tasks. In such systems, only the set of MS tasks has to be replaced during mode changes, without jeopardizing the schedulability of the MI tasks. Of prime concern is that the mode change is safe and efficient: i.e. the mode change needs to be performed in a predefined time window and no deadlines may be missed as a function of the mode change.
Resumo:
Consider a network where all nodes share a single broadcast domain such as a wired broadcast network. Nodes take sensor readings but individual sensor readings are not the most important pieces of data in the system. Instead, we are interested in aggregated quantities of the sensor readings such as minimum and maximum values, the number of nodes and the median among a set of sensor readings on different nodes. In this paper we show that a prioritized medium access control (MAC) protocol may advantageously be exploited to efficiently compute aggregated quantities of sensor readings. In this context, we propose a distributed algorithm that has a very low time and message-complexity for computing certain aggregated quantities. Importantly, we show that if every sensor node knows its geographical location, then sensor data can be interpolated with our novel distributed algorithm, and the message-complexity of the algorithm is independent of the number of nodes. Such an interpolation of sensor data can be used to compute any desired function; for example the temperature gradient in a room (e.g., industrial plant) densely populated with sensor nodes, or the gas concentration gradient within a pipeline or traffic tunnel.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Redes de Comunicação e Multimédia
Resumo:
A system comprised of a Martin-Puplett type polarizing interferometer and a Helium-3 cryostat was developed to study the transmission of materials in the very-far-infrared region of the spectrum. This region is of significant interest due to the low-energy excitations which many materials exhibit. The experimental transmission spectrum contains information concerning the optical properties of the material. The set-up of this system is described in detail along with the adaptations and improvements which have been made to the system to ensure the best results. Transmission experiments carried out with this new set-up for two different varieties of materials: superconducting thin films of lead and biological proteins, are discussed. Several thin films of lead deposited on fused silica quartz substrates were studied. From the ratio of the transmission in the superconducting state to that in the normal state the superconducting energy gap was determined to be approximately 25 cm-1 which corresponds to 2~/kBTc rv 5 in agreement with literature data. Furthermore, in agreement with theoretical predictions, the maximum in the transmission ratio was observed to increase as the film thickness was increased. These results provide verification of the system's ability to accurately measure the optical properties of thin low-Tc superconducting films. Transmission measurements were carried out on double deionized water, and a variety of different concentrations by weight of the globular protein, Bovine Serum Albumin, in the sol, gel and crystalline forms. The results of the water study agree well with literature values and thus further illustrate the reproducibility of the system. The results of the protein experiments, although preliminary, indicate that as the concentration increases the samples become more transparent. Some weak structure in the frequency dependent absorption coefficient, which is more prominent in crystalline samples, may be due to low frequency vibrations of the protein molecules.
Resumo:
The initial timing of face-specific effects in event-related potentials (ERPs) is a point of contention in face processing research. Although effects during the time of the N170 are robust in the literature, inconsistent effects during the time of the P100 challenge the interpretation of the N170 as being the initial face-specific ERP effect. The interpretation of the early P100 effects are often attributed to low-level differences between face stimuli and a host of other image categories. Research using sophisticated controls for low-level stimulus characteristics (Rousselet, Husk, Bennett, & Sekuler, 2008) report robust face effects starting at around 130 ms following stimulus onset. The present study examines the independent components (ICs) of the P100 and N170 complex in the context of a minimally controlled low-level stimulus set and a clear P100 effect for faces versus houses at the scalp. Results indicate that four ICs account for the ERPs to faces and houses in the first 200ms following stimulus onset. The IC that accounts for the majority of the scalp N170 (icNla) begins dissociating stimulus conditions at approximately 130 ms, closely replicating the scalp results of Rousselet et al. (2008). The scalp effects at the time of the P100 are accounted for by two constituent ICs (icP1a and icP1b). The IC that projects the greatest voltage at the scalp during the P100 (icP1a) shows a face-minus-house effect over the period of the P100 that is less robust than the N 170 effect of icN 1 a when measured as the average of single subject differential activation robustness. The second constituent process of the P100 (icP1b), although projecting a smaller voltage to the scalp than icP1a, shows a more robust effect for the face-minus-house contrast starting prior to 100 ms following stimulus onset. Further, the effect expressed by icP1 b takes the form of a larger negative projection to medial occipital sites for houses over faces partially canceling the larger projection of icP1a, thereby enhancing the face positivity at this time. These findings have three main implications for ERP research on face processing: First, the ICs that constitute the face-minus-house P100 effect are independent from the ICs that constitute the N170 effect. This suggests that the P100 effect and the N170 effect are anatomically independent. Second, the timing of the N170 effect can be recovered from scalp ERPs that have spatio-temporally overlapping effects possibly associated with low-level stimulus characteristics. This unmixing of the EEG signals may reduce the need for highly constrained stimulus sets, a characteristic that is not always desirable for a topic that is highly coupled to ecological validity. Third, by unmixing the constituent processes of the EEG signals new analysis strategies are made available. In particular the exploration of the relationship between cortical processes over the period of the P100 and N170 ERP complex (and beyond) may provide previously unaccessible answers to questions such as: Is the face effect a special relationship between low-level and high-level processes along the visual stream?
Resumo:
Cellular stress resistance has been shown to be highly correlated with longevity. However, the mechanisms conferring this stress resistance have yet to be identified. Maintenance of protein homeostasis is a critical component of cellular maintenance and stress resistance. Superior protein homeostasis capacities may thus underlie the greater stress resistance observed in longer-lived animals; however, little vertebrate data have been provided supporting this idea. I used two different experimental approaches to test the associations of protein homeostasis capacities with stress resistance and lifespan: 1) a comparison between a large set of vertebrate species with varying body masses and lifespans and 2) a comparison of long-lived Snell dwarf mice and their normal littermates. Protein homeostasis mechanisms including protein degradation activity, protein repair activity and molecular chaperone levels were examined. These measurements were performed in liver, heart and brain tissues, and isolated myoblasts. My results indicated that neither protein degradation nor protein repair were upregulated in association with enhanced stress resistance and longevity in an inter-species and intraspecies context. Furthermore, my results did show that there is a positive correlation between molecular chaperone levels and maximum lifespan (MLSP). However, there was no elevation of chaperone levels in the long-lived Snell dwarf mouse, indicating there are other mechanisms linked to their increased lifespan. Therefore, these results suggest that molecular chaperones are involved in increasing animal lifespan in an interspecies context.
Resumo:
Nanoscale silica was synthesized by precipitation method using sodium silicate and dilute hydrochloric acid under controlled conditions. The synthesized silica was characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), BET adsorption and X-Ray Diffraction (XRD). The particle size of silica was calculated to be 13 nm from the XRD results and the surface area was found to be 295 m2/g by BET method. The performance of this synthesized nanosilica as a reinforcing filler in natural rubber (NR) compound was investigated. The commercial silica was used as the reference material. Nanosilica was found to be effective reinforcing filler in natural rubber compound. Filler-matrix interaction was better for nanosilica than the commercial silica. The synthesized nanosilica was used in place of conventional silica in HRH (hexamethylene tetramine, resorcinol and silica) bonding system for natural rubber and styrene butadiene rubber / Nylon 6 short fiber composites. The efficiency of HRH bonding system based on nanosilica was better. Nanosilica was also used as reinforcing filler in rubber / Nylon 6 short fiber hybrid composite. The cure, mechanical, ageing, thermal and dynamic mechanical properties of nanosilica / Nylon 6 short fiber / elastomeric hybrid composites were studied in detail. The matrices used were natural rubber (NR), nitrile rubber (NBR), styrene butadiene rubber (SBR) and chloroprene rubber (CR). Fiber loading was varied from 0 to 30 parts per hundred rubber (phr) and silica loading was varied from 0 to 9 phr. Hexa:Resorcinol:Silica (HRH) ratio was maintained as 2:2:1. HRH loading was adjusted to 16% of the fiber loading. Minimum torque, maximum torque and cure time increased with silica loading. Cure rate increased with fiber loading and decreased with silica content. The hybrid composites showed improved mechanical properties in the presence of nanosilica. Tensile strength showed a dip at 10 phr fiber loading in the case of NR and CR while it continuously increased with fiber loading in the case of NBR and SBR. The nanosilica improved the tensile strength, modulus and tear strength better than the conventional silica. Abrasion resistance and hardness were also better for the nanosilica composites. Resilience and compression set were adversely affected. Hybrid composites showed anisotropy in mechanical properties. Retention in ageing improved with fiber loading and was better for nanosilica-filled hybrid composites. The nanosilica also improved the thermal stability of the hybrid composite better than the commercial silica. All the composites underwent two-step thermal degradation. Kinetic studies showed that the degradation of all the elastomeric composites followed a first-order reaction. Dynamic mechanical analysis revealed that storage modulus (E’) and loss modulus (E”) increased with nanosiica content, fiber loading and frequency for all the composites, independent of the matrix. The highest rate of increase was registered for NBR rubber.
Resumo:
Control of protein synthesis is a key step in the regulation of gene expression during apoptosis and the heat shock response. Under such conditions, cap-dependent translation is impaired and Internal Ribosome Entry Site (IRES)-dependent translation plays a major role in mammalian cells. Although the role of IRES-dependent translation during apoptosis has been mainly studied in mammals, its role in the translation of Drosophila apoptotic genes has not been yet studied. The observation that the Drosophila mutant embryos for the cap-binding protein, the eukaryotic initiation factor eIF4E, exhibits increased apoptosis in correlation with up-regulated proapoptotic gene reaper (rpr) transcription constitutes the first evidence for the existence of a cap-independent mechanism for the translation of Drosophila proapoptotic genes. The mechanism of translation of rpr and other proapoptotic genes was investigated in this work. We found that the 5 UTR of rpr mRNA drives translation in an IRES-dependent manner. It promotes the translation of reporter RNAs in vitro either in the absence of cap, in the presence of cap competitors, or in extracts derived from heat shocked and eIF4E mutant embryos and in vivo in cells transfected with reporters bearing a non functional cap structure, indicating that cap recognition is not required in rpr mRNA for translation. We also show that rpr mRNA 5 UTR exhibits a high degree of similarity with that of Drosophila heat shock protein 70 mRNA (hsp70), an antagonist of apoptosis, and that both are able to conduct IRES-mediated translation. The proapoptotic genes head involution defective (hid) and grim, but not sickle, also display IRES activity. Studies of mRNA association to polysomes in embryos indicate that both rpr, hsp70, hid and grim endogenous mRNAs are recruited to polysomes in embryos in which apoptosis or thermal stress was induced. We conclude that hsp70 and, on the other hand, rpr, hid and grim which are antagonizing factors during apoptosis, use a similar mechanism for protein synthesis. The outcome for the cell would thus depend on which protein is translated under a given stress condition. Factors involved in the differential translation driven by these IRES could play an important role. For this purpose, we undertook the identification of the ribonucleoprotein (RNP) complexes assembled onto the 5 UTR of rpr mRNA. We established a tobramycin-affinity-selection protocol that allows the purification of specific RNP that can be further analyzed by mass spectrometry. Several RNA binding proteins were identified as part of the rpr 5 UTR RNP complex, some of which have been related to IRES activity. The involvement of one of them, the La antigen, in the translation of rpr mRNA, was established by RNA-crosslinking experiments using recombinant protein and rpr 5 UTR and by the analysis of the translation efficiency of reporter mRNAs in Drosophila cells after knock down of the endogenous La by RNAi experiments. Several uncharacterized proteins were also identified, suggesting that they might play a role during translation, during the assembly of the translational machinery or in the priming of the mRNA before ribosome recognition. Our data provide evidence for the involvement of La antigen in the translation of rpr mRNA and set a protocol for purification of tagged-RNA-protein complexes from cytoplasmic extracts. To further understand the mechanisms of translation initiation in Drosophila, we analyzed the role of eIF4B on cap-dependent and cap-independent translation. We showed that eIF4B is mostly involved in cap-, but not IRES-dependent translation as it happens in mammals.
Resumo:
We present a general framework for discriminative estimation based on the maximum entropy principle and its extensions. All calculations involve distributions over structures and/or parameters rather than specific settings and reduce to relative entropy projections. This holds even when the data is not separable within the chosen parametric class, in the context of anomaly detection rather than classification, or when the labels in the training set are uncertain or incomplete. Support vector machines are naturally subsumed under this class and we provide several extensions. We are also able to estimate exactly and efficiently discriminative distributions over tree structures of class-conditional models within this framework. Preliminary experimental results are indicative of the potential in these techniques.
Resumo:
El coneixement de la superfície d'energia potencial (PES) ha estat essencial en el món de la química teòrica per tal de discutir tant la reactivitat química com l'estructura i l'espectroscòpia molecular. En el camp de la reactivitat química es hem proposat continuar amb el desenvolupament de nova metodologia dins el marc de la teoria del funcional de la densitat conceptual. En particular aquesta tesis es centrarà en els següents punts: a) El nombre i la naturalesa dels seus punts estacionaris del PES poden sofrir canvis radicals modificant el nivell de càlcul utilitzats, de tal manera que per estar segurs de la seva naturalesa cal anar a nivells de càlcul molt elevats. La duresa és una mesura de la resistència d'un sistema químic a canviar la seva configuració electrònica, i segons el principi de màxima duresa on hi hagi un mínim o un màxim d'energia trobarem un màxim o un mínim de duresa, respectivament. A l'escollir tot un conjunt de reaccions problemàtiques des del punt de vista de presència de punts estacionaris erronis, hem observat que els perfils de duresa són més independents de la base i del mètode utilitzats, a més a més sempre presenten el perfil correcte. b) Hem desenvolupat noves expressions basades en les integracions dels kernels de duresa per tal de determinar la duresa global d'una molècula de manera més precisa que la utilitzada habitualment que està basada en el càlcul numèric de la derivada segona de l'energia respecte al número d'electrons. c) Hem estudiat la validesa del principis de màxima duresa i de mínima polaritzabiliat en les vibracions asimètriques en sistemes aromàtics. Hem trobat que per aquests sistemes alguns modes vibracionals incompleixen aquests principis i hem analitzat la relació d'aquest l'incompliment amb l'efecte de l'acoblament pseudo-Jahn-Teller. A més a més, hem postulat tot un conjunt de regles molt senzilles que ens permetien deduir si una molècula compliria o no aquests principis sense la realització de cap càlcul previ. Tota aquesta informació ha estat essencial per poder determinar exactament quines són les causes del compliment o l'incompliment del MHP i MPP. d) Finalment, hem realitzat una expansió de l'energia funcional en termes del nombre d'electrons i de les coordenades normals dintre del conjunt canònic. En la comparació d'aquesta expansió amb l'expansió de l'energia del nombre d'electrons i del potencial extern hem pogut recuperar d'una altra forma diferent tot un conjunt de relacions ja conegudes entre alguns coneguts descriptors de reactivitat del funcional de la densitat i en poden establir tot un conjunt de noves relacions i de nous descriptors. Dins del marc de les propietats moleculars es proposa generalitzar i millorar la metodologia pel càlcul de la contribució vibracional (Pvib) a les propietats òptiques no lineals (NLO). Tot i que la Pvib no s'ha tingut en compte en la majoria dels estudis teòrics publicats de les propietats NLO, recentment s'ha comprovat que la Pvib de diversos polímers orgànics amb altes propietats òptiques no lineals és fins i tot més gran que la contribució electrònica. Per tant, tenir en compte la Pvib és essencial en el disseny dels nous materials òptics no lineals utilitzats en el camp de la informàtica, les telecomunicacions i la tecnologia làser. Les principals línies d'aquesta tesis sobre aquest tema són: a) Hem calculat per primera vegada els termes d'alt ordre de Pvib de diversos polímers orgànics amb l'objectiu d'avaluar la seva importància i la convergència de les sèries de Taylor que defineixen aquestes contribucions vibracionals. b) Hem avaluat les contribucions electròniques i vibracionals per una sèrie de molècules orgàniques representatives utilitzant diferents metodologies, per tal de poder de determinar quina és la manera més senzilla per poder calcular les propietats NLO amb una precisió semiquantitativa.
Resumo:
This paper contains a set of materials to help hearing persons understand hearing loss.
Resumo:
This paper compares conventional auditory brainstem response tests (ABRs) and Maximum Length Sequence auditory brainstem response tests (MLS ABRs). The results found that the faster MLS ABRs could prove an accurate screening tool for auditory sensitivity.
Resumo:
This paper discusses the Nucleus 22 cochlear implant.
Resumo:
This paper evaluates speech perception testing in pediatric cochlear implant users. Using pre-recorded stimulus presentation, the author replicated an earlier experiment comparing the Lexical Neighborhood List (LNT) test to the Phonetically Balanced Kindergarten (PB-K) test in estimating speech perception abilities in hearing impaired children.
Resumo:
This study examines specific auditory features perceived by profoundly hearing-impaired children using conventional binaural hearing aids and the Nucleus 22 Channel Cochlear Implant. The primary interest of this study was to learn which speech features were most easily perceived by users of each device.