999 resultados para Master Sintering Curve


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal interface materials (TIMs) form a mechanical and thermal link between a heat source and a heat sink. Thus, they should have high thermal conductivity and high compliance to efficiently transfer heat and accommodate any differential strain between the heat source and the sink, respectively. This paper reports on the processing and the characterization of potential metallic TIM composite solders comprising of Cu, a high conductivity phase, uniformly embedded in In matrix, a highly compliant phase. We propose the fabrication of such a material by a two-step fabrication technique comprising of liquid phase sintering (LPS) followed by accumulative roll bonding (ARB). To demonstrate the efficacy of the employed two-step processing technique, an In-40 vol. % Cu composite solder was produced first using LPS with short sintering periods (30 or 60 s at 160 degrees C) followed by ARB up to five passes, each pass imposing a strain of 50%. Mechanical response and electrical and thermal conductivities of the fabricated samples were evaluated. It was observed that processing through ARB homogenizes the distribution of Cu in an In matrix, disintegrates the agglomerates of Cu powders, and also significantly increases thermal and electrical conductivities, almost attaining theoretically predicted values, without significantly increasing the flow stress. Furthermore, the processing technique also allows the insertion of desired foreign species, such as reduced graphene oxide, in In-Cu for further enhancing a target property, such as electrical conductivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scaffolds for bone tissue engineering are essentially characterized by porous three-dimensional structures with interconnected pores to facilitate the exchange of nutrients and removal of waste products from cells, thereby promoting cell proliferation in such engineered scaffolds. Although hydroxyapatite is widely being considered for bone tissue engineering applications due to its occurrence in the natural extracellular matrix of this tissue, limited reports are available on additive manufacturing of hydroxyapatite-based materials. In this perspective, hydroxyapatite-based three-dimensional porous scaffolds with two different binders (maltodextrin and sodium alginate) were fabricated using the extrusion method of three-dimensional plotting and the results were compared in reference to the structural properties of scaffolds processed via chemical stabilization and sintering routes, respectively. With the optimal processing conditions regarding to pH and viscosity of binder-loaded hydroxyapatite pastes, scaffolds with parallelepiped porous architecture having up to 74% porosity were fabricated. Interestingly, sintering of the as-plotted hydroxyapatite-sodium alginate (cross-linked with CaCl2 solution) scaffolds led to the formation of chlorapatite (Ca9.54P5.98O23.8Cl1.60(OH)(2.74)). Both the sintered scaffolds displayed progressive deformation and delayed fracture under compressive loading, with hydroxyapatite-alginate scaffolds exhibiting a higher compressive strength (9.5 +/- 0.5MPa) than hydroxyapatite-maltodextrin scaffolds (7.0 +/- 0.6MPa). The difference in properties is explained in terms of the phase assemblage and microstructure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four types of the fundamental complex potential in antiplane elasticity are introduced: (a) a point dislocation, (b) a concentrated force, (c) a dislocation doublet and (d) a concentrated force doublet. It is proven that if the axis of the concentrated force doublet is perpendicular to the direction of the dislocation doublet, the relevant complex potentials are equivalent. Using the obtained complex potentials, a singular integral equation for the curve crack problem is introduced. Some particular features of the obtained singular integral equation are discussed, and numerical solutions and examples are given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nano-sized TiNi powder with an average size of 50nm was consolidated using spark plasma sintering (SPS) at 800 °C for 5min. A layer of anatase TiO 2 coating was formed on the sintered TiNi by chemical reaction with a hydrogen peroxide (H2O2) solution at 60 °C followed by heat treatment at 400 °C to enhance the bioactivity of the metal surface. Cell culture using osteoblast cells and a biomimetic test in simulated body fluid proved the biocompatibility of the chemically treated SPS TiNi. © IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is demonstrated that the primary instability of the wake of a two-dimensional circular cylinder rotating with constant angular velocity can be qualitatively well described by the Landau equation. The coefficients of the Landau equation are determined by means of numerical simulations for the Navier-Stokes equations. The critical Reynolds numbers, which depend on the angular velocity of the cylinder, are evaluated correctly by linear regression. (C) 2004 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper analyzes the existence of an inflation tax Laffer curve (ITLC) in the context of two standard optimizing monetary models: a cash-in-advance model and a money in the utility function model. Agents’ preferences are characterized in the two models by a constant relative risk aversion utility function. Explosive hyperinflation rules out the presence of an ITLC. In the context of a cash-in-advance economy, this paper shows that explosive hyperinflation is feasible and thus an ITLC is ruled out whenever the relative risk aversion parameter is greater than one. In the context of an optimizing model with money in the utility function, this paper firstly shows that an ITLC is ruled out. Moreover, it is shown that explosive hyperinflations are more likely when the transactions role of money is more important. However, hyperinflationary paths are not feasible in this context unless certain restrictions are imposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies the comovement between output and inflation in the EU15 countries. Following den Haan (2000), I use the correlations of VAR forecast errors at different horizons in order to analyze the output-inflation relationship. The empirical results show that eight countries display a significant positive comovement between output and inflation. Moreover, the empirical evidence suggests that a Phillips curve phenomenom is more likely to be detected in countries where inflation is more stable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is only the table of contents for a series of technical reports done from 1975-1978. The papers were done on contract for BLM by a number of universities and consulting firms such as Science Applications, Inc., University of Southern California, Scripps Institute of Oceanography, Moss Landing Marine Laboratories, and various campuses of University of California and California State University. (PDF contains 36 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is concerned with the derivation of optimal scaling laws, in the sense of matching lower and upper bounds on the energy, for a solid undergoing ductile fracture. The specific problem considered concerns a material sample in the form of an infinite slab of finite thickness subjected to prescribed opening displacements on its two surfaces. The solid is assumed to obey deformation-theory of plasticity and, in order to further simplify the analysis, we assume isotropic rigid-plastic deformations with zero plastic spin. When hardening exponents are given values consistent with observation, the energy is found to exhibit sublinear growth. We regularize the energy through the addition of nonlocal energy terms of the strain-gradient plasticity type. This nonlocal regularization has the effect of introducing an intrinsic length scale into the energy. We also put forth a physical argument that identifies the intrinsic length and suggests a linear growth of the nonlocal energy. Under these assumptions, ductile fracture emerges as the net result of two competing effects: whereas the sublinear growth of the local energy promotes localization of deformation to failure planes, the nonlocal regularization stabilizes this process, thus resulting in an orderly progression towards failure and a well-defined specific fracture energy. The optimal scaling laws derived here show that ductile fracture results from localization of deformations to void sheets, and that it requires a well-defined energy per unit fracture area. In particular, fractal modes of fracture are ruled out under the assumptions of the analysis. The optimal scaling laws additionally show that ductile fracture is cohesive in nature, i.e., it obeys a well-defined relation between tractions and opening displacements. Finally, the scaling laws supply a link between micromechanical properties and macroscopic fracture properties. In particular, they reveal the relative roles that surface energy and microplasticity play as contributors to the specific fracture energy of the material. Next, we present an experimental assessment of the optimal scaling laws. We show that when the specific fracture energy is renormalized in a manner suggested by the optimal scaling laws, the data falls within the bounds predicted by the analysis and, moreover, they ostensibly collapse---with allowances made for experimental scatter---on a master curve dependent on the hardening exponent, but otherwise material independent.