862 resultados para Markov Model
Resumo:
We present a new haplotype-based approach for inferring local genetic ancestry of individuals in an admixed population. Most existing approaches for local ancestry estimation ignore the latent genetic relatedness between ancestral populations and treat them as independent. In this article, we exploit such information by building an inheritance model that describes both the ancestral populations and the admixed population jointly in a unified framework. Based on an assumption that the common hypothetical founder haplotypes give rise to both the ancestral and the admixed population haplotypes, we employ an infinite hidden Markov model to characterize each ancestral population and further extend it to generate the admixed population. Through an effective utilization of the population structural information under a principled nonparametric Bayesian framework, the resulting model is significantly less sensitive to the choice and the amount of training data for ancestral populations than state-of-the-art algorithms. We also improve the robustness under deviation from common modeling assumptions by incorporating population-specific scale parameters that allow variable recombination rates in different populations. Our method is applicable to an admixed population from an arbitrary number of ancestral populations and also performs competitively in terms of spurious ancestry proportions under a general multiway admixture assumption. We validate the proposed method by simulation under various admixing scenarios and present empirical analysis results from a worldwide-distributed dataset from the Human Genome Diversity Project.
Resumo:
针对自动最复重传(ARQ)机制在无线广播系统中吞吐量性能不佳的缺陷,提出一种基于随机网络编码的广播重传方案RNC-ARQ。对于广播节点,采用随机线性码对所有丢失包进行编码组合重传。对于接收节点,当接收的编码包累积到一定数量后可通过解码操作恢复出原始数据。该方案可有效减少重传次数,改善无线广播的吞吐量性能。基于Gilbert-Elliott模型描述的突发错误信道,建立了信道状态和节点接收处理流程合并的多状态马尔可夫模型,并以此为基础推导了RNC-ARQ方案的TQ吐量闭合解。最后,使用NS-2模拟器评估RNC-ARQ方案的性能,结果表明在突发差错信道下,基于随机网络编码重传方案的吞吐量优于传统的选择重传ARQ方案和基于异或编码的重传方案。
Resumo:
A novel approach for real-time skin segmentation in video sequences is described. The approach enables reliable skin segmentation despite wide variation in illumination during tracking. An explicit second order Markov model is used to predict evolution of the skin-color (HSV) histogram over time. Histograms are dynamically updated based on feedback from the current segmentation and predictions of the Markov model. The evolution of the skin-color distribution at each frame is parameterized by translation, scaling and rotation in color space. Consequent changes in geometric parameterization of the distribution are propagated by warping and resampling the histogram. The parameters of the discrete-time dynamic Markov model are estimated using Maximum Likelihood Estimation, and also evolve over time. The accuracy of the new dynamic skin color segmentation algorithm is compared to that obtained via a static color model. Segmentation accuracy is evaluated using labeled ground-truth video sequences taken from staged experiments and popular movies. An overall increase in segmentation accuracy of up to 24% is observed in 17 out of 21 test sequences. In all but one case the skin-color classification rates for our system were higher, with background classification rates comparable to those of the static segmentation.
Resumo:
A novel approach for real-time skin segmentation in video sequences is described. The approach enables reliable skin segmentation despite wide variation in illumination during tracking. An explicit second order Markov model is used to predict evolution of the skin color (HSV) histogram over time. Histograms are dynamically updated based on feedback from the current segmentation and based on predictions of the Markov model. The evolution of the skin color distribution at each frame is parameterized by translation, scaling and rotation in color space. Consequent changes in geometric parameterization of the distribution are propagated by warping and re-sampling the histogram. The parameters of the discrete-time dynamic Markov model are estimated using Maximum Likelihood Estimation, and also evolve over time. Quantitative evaluation of the method was conducted on labeled ground-truth video sequences taken from popular movies.
Resumo:
The number of hospital admissions in England due to heart failure is projected to increase by over 50% during the next 25 years. This will incur greater pressures on hospital managers to allocate resources in an effective manner. A reliable indicator for measuring the quantity of resources consumed by hospital patients is their length of stay (LOS) in care. This paper proposes modelling the length of time heart failure patients spend in hospital using a special type of Markov model, where the flow of patients through hospital can be thought of as consisting of three stages of care—short-, medium- and longer-term care. If it is assumed that new admissions into the ward are replacements for discharges, such a model may be used to investigate the case-mix of patients in hospital and the expected patient turnover during some specified period of time. An example is illustrated by considering hospital admissions to a Belfast hospital in Northern Ireland, between 2000 and 2004.
Resumo:
Coxian phase-type distributions are a special type of Markov model that describes duration until an event occurs in terms of a process consisting of a sequence of latent phases. This paper considers the use of Coxian phase-type distributions for modelling patient duration of stay for the elderly in hospital and investigates the potential for using the resulting distribution as a classifying variable to identify common characteristics between different groups of patients according to their (anticipated) length of stay in hospital. The identification of common characteristics for patient length of stay groups would offer hospital managers and clinicians possible insights into the overall management and bed allocation of the hospital wards.
Resumo:
Coxian phase-type distributions are a special type of Markov model that can be used to represent survival times in terms of phases through which an individual may progress until they eventually leave the system completely. Previous research has considered the Coxian phase-type distribution to be ideal in representing patient survival in hospital. However, problems exist in fitting the distributions. This paper investigates the problems that arise with the fitting process by simulating various Coxian phase-type models for the representation of patient survival and examining the estimated parameter values and eigenvalues obtained. The results indicate that numerical methods previously used for fitting the model parameters do not always converge. An alternative technique is therefore considered. All methods are influenced by the choice of initial parameter values. The investigation uses a data set of 1439 elderly patients and models their survival time, the length of time they spend in a UK hospital.
Resumo:
In this paper, we present a new approach to visual speech recognition which improves contextual modelling by combining Inter-Frame Dependent and Hidden Markov Models. This approach captures contextual information in visual speech that may be lost using a Hidden Markov Model alone. We apply contextual modelling to a large speaker independent isolated digit recognition task, and compare our approach to two commonly adopted feature based techniques for incorporating speech dynamics. Results are presented from baseline feature based systems and the combined modelling technique. We illustrate that both of these techniques achieve similar levels of performance when used independently. However significant improvements in performance can be achieved through a combination of the two. In particular we report an improvement in excess of 17% relative Word Error Rate in comparison to our best baseline system.
Resumo:
Baited cameras are often used for abundance estimation wherever alternative techniques are precluded, e.g. in abyssal systems and areas such as reefs. This method has thus far used models of the arrival process that are deterministic and, therefore, permit no estimate of precision.
Furthermore, errors due to multiple counting of fish and missing those not seen by the camera have restricted the technique to using only the time of first arrival, leaving a lot of data redundant. Here, we reformulate the arrival process using a stochastic model, which allows the precision of abundance
estimates to be quantified. Assuming a non-gregarious, cross-current-scavenging fish, we show that prediction of abundance from first arrival time is extremely uncertain. Using example data, we show
that simple regression-based prediction from the initial (rising) slope of numbers at the bait gives good precision, accepting certain assumptions. The most precise abundance estimates were obtained
by including the declining phase of the time series, using a simple model of departures, and taking account of scavengers beyond the camera’s view, using a hidden Markov model.
Resumo:
This paper presents a new algorithm for learning the structure of a special type of Bayesian network. The conditional phase-type (C-Ph) distribution is a Bayesian network that models the probabilistic causal relationships between a skewed continuous variable, modelled by the Coxian phase-type distribution, a special type of Markov model, and a set of interacting discrete variables. The algorithm takes a dataset as input and produces the structure, parameters and graphical representations of the fit of the C-Ph distribution as output.The algorithm, which uses a greedy-search technique and has been implemented in MATLAB, is evaluated using a simulated data set consisting of 20,000 cases. The results show that the original C-Ph distribution is recaptured and the fit of the network to the data is discussed.
Resumo:
BACKGROUND: Age-related macular degeneration is the most common cause of sight impairment in the UK. In neovascular age-related macular degeneration (nAMD), vision worsens rapidly (over weeks) due to abnormal blood vessels developing that leak fluid and blood at the macula.
OBJECTIVES: To determine the optimal role of optical coherence tomography (OCT) in diagnosing people newly presenting with suspected nAMD and monitoring those previously diagnosed with the disease.
DATA SOURCES: Databases searched: MEDLINE (1946 to March 2013), MEDLINE In-Process & Other Non-Indexed Citations (March 2013), EMBASE (1988 to March 2013), Biosciences Information Service (1995 to March 2013), Science Citation Index (1995 to March 2013), The Cochrane Library (Issue 2 2013), Database of Abstracts of Reviews of Effects (inception to March 2013), Medion (inception to March 2013), Health Technology Assessment database (inception to March 2013).
REVIEW METHODS: Types of studies: direct/indirect studies reporting diagnostic outcomes.
INDEX TEST: time domain optical coherence tomography (TD-OCT) or spectral domain optical coherence tomography (SD-OCT).
COMPARATORS: clinical evaluation, visual acuity, Amsler grid, colour fundus photographs, infrared reflectance, red-free images/blue reflectance, fundus autofluorescence imaging, indocyanine green angiography, preferential hyperacuity perimetry, microperimetry. Reference standard: fundus fluorescein angiography (FFA). Risk of bias was assessed using quality assessment of diagnostic accuracy studies, version 2. Meta-analysis models were fitted using hierarchical summary receiver operating characteristic curves. A Markov model was developed (65-year-old cohort, nAMD prevalence 70%), with nine strategies for diagnosis and/or monitoring, and cost-utility analysis conducted. NHS and Personal Social Services perspective was adopted. Costs (2011/12 prices) and quality-adjusted life-years (QALYs) were discounted (3.5%). Deterministic and probabilistic sensitivity analyses were performed.
RESULTS: In pooled estimates of diagnostic studies (all TD-OCT), sensitivity and specificity [95% confidence interval (CI)] was 88% (46% to 98%) and 78% (64% to 88%) respectively. For monitoring, the pooled sensitivity and specificity (95% CI) was 85% (72% to 93%) and 48% (30% to 67%) respectively. The FFA for diagnosis and nurse-technician-led monitoring strategy had the lowest cost (£39,769; QALYs 10.473) and dominated all others except FFA for diagnosis and ophthalmologist-led monitoring (£44,649; QALYs 10.575; incremental cost-effectiveness ratio £47,768). The least costly strategy had a 46.4% probability of being cost-effective at £30,000 willingness-to-pay threshold.
LIMITATIONS: Very few studies provided sufficient information for inclusion in meta-analyses. Only a few studies reported other tests; for some tests no studies were identified. The modelling was hampered by a lack of data on the diagnostic accuracy of strategies involving several tests.
CONCLUSIONS: Based on a small body of evidence of variable quality, OCT had high sensitivity and moderate specificity for diagnosis, and relatively high sensitivity but low specificity for monitoring. Strategies involving OCT alone for diagnosis and/or monitoring were unlikely to be cost-effective. Further research is required on (i) the performance of SD-OCT compared with FFA, especially for monitoring but also for diagnosis; (ii) the performance of strategies involving combinations/sequences of tests, for diagnosis and monitoring; (iii) the likelihood of active and inactive nAMD becoming inactive or active respectively; and (iv) assessment of treatment-associated utility weights (e.g. decrements), through a preference-based study.
STUDY REGISTRATION: This study is registered as PROSPERO CRD42012001930.
FUNDING: The National Institute for Health Research Health Technology Assessment programme.
Resumo:
To cope with the rapid growth of multimedia applications that requires dynamic levels of quality of service (QoS), cross-layer (CL) design, where multiple protocol layers are jointly combined, has been considered to provide diverse QoS provisions for mobile multimedia networks. However, there is a lack of a general mathematical framework to model such CL scheme in wireless networks with different types of multimedia classes. In this paper, to overcome this shortcoming, we therefore propose a novel CL design for integrated real-time/non-real-time traffic with strict preemptive priority via a finite-state Markov chain. The main strategy of the CL scheme is to design a Markov model by explicitly including adaptive modulation and coding at the physical layer, queuing at the data link layer, and the bursty nature of multimedia traffic classes at the application layer. Utilizing this Markov model, several important performance metrics in terms of packet loss rate, delay, and throughput are examined. In addition, our proposed framework is exploited in various multimedia applications, for example, the end-to-end real-time video streaming and CL optimization, which require the priority-based QoS adaptation for different applications. More importantly, the CL framework reveals important guidelines as to optimize the network performance
Resumo:
Credal networks are graph-based statistical models whose parameters take values in a set, instead of being sharply specified as in traditional statistical models (e.g., Bayesian networks). The computational complexity of inferences on such models depends on the irrelevance/independence concept adopted. In this paper, we study inferential complexity under the concepts of epistemic irrelevance and strong independence. We show that inferences under strong independence are NP-hard even in trees with binary variables except for a single ternary one. We prove that under epistemic irrelevance the polynomial-time complexity of inferences in credal trees is not likely to extend to more general models (e.g., singly connected topologies). These results clearly distinguish networks that admit efficient inferences and those where inferences are most likely hard, and settle several open questions regarding their computational complexity. We show that these results remain valid even if we disallow the use of zero probabilities. We also show that the computation of bounds on the probability of the future state in a hidden Markov model is the same whether we assume epistemic irrelevance or strong independence, and we prove an analogous result for inference in Naive Bayes structures. These inferential equivalences are important for practitioners, as hidden Markov models and Naive Bayes networks are used in real applications of imprecise probability.
Resumo:
Spectrum sensing is the cornerstone of cognitive radio technology and refers to the process of obtaining awareness of the radio spectrum usage in order to detect the presence of other users. Spectrum sensing algorithms consume considerable energy and time. Prediction methods for inferring the channel occupancy of future time instants have been proposed as a means of improving performance in terms of energy and time consumption. This paper studies the performance of a hidden Markov model (HMM) spectrum occupancy predictor as well as the improvement in sensing energy and time consumption based on real occupancy data obtained in the 2.4GHz ISM band. Experimental results show that the HMM-based occupancy predictor outperforms a kth order Markov and a 1-nearest neighbour (1NN) predictor. Our study also suggests that by employing such a predictive scheme in spectrum sensing, an improvement of up to 66% can be achieved in the required sensing energy and time.
Resumo:
The analysis of seabed structure is important in a wide variety of scientific and industrial applications. In this paper, underwater acoustic data produced by bottom-penetrating sonar (Topas) are analyzed using unsupervised volumetric segmentation, based on a three dimensional Gibbs-Markov model. The result is a concise and accurate description of the seabed, in which key structures are emphasized. This description is also very well suited to further operations, such as the enhancement and automatic recognition of important structures. Experimental results demonstrating the effectiveness of this approach are shown, using Topas data gathered in the North Sea off Horten, Norway.