994 resultados para Marker-assisted selection
Resumo:
PURPOSE: To compare different techniques for positive contrast imaging of susceptibility markers with MRI for three-dimensional visualization. As several different techniques have been reported, the choice of the suitable method depends on its properties with regard to the amount of positive contrast and the desired background suppression, as well as other imaging constraints needed for a specific application. MATERIALS AND METHODS: Six different positive contrast techniques are investigated for their ability to image at 3 Tesla a single susceptibility marker in vitro. The white marker method (WM), susceptibility gradient mapping (SGM), inversion recovery with on-resonant water suppression (IRON), frequency selective excitation (FSX), fast low flip-angle positive contrast SSFP (FLAPS), and iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) were implemented and investigated. RESULTS: The different methods were compared with respect to the volume of positive contrast, the product of volume and signal intensity, imaging time, and the level of background suppression. Quantitative results are provided, and strengths and weaknesses of the different approaches are discussed. CONCLUSION: The appropriate choice of positive contrast imaging technique depends on the desired level of background suppression, acquisition speed, and robustness against artifacts, for which in vitro comparative data are now available.
Resumo:
This paper presents automated segmentation of structuresin the Head and Neck (H\&N) region, using an activecontour-based joint registration and segmentation model.A new atlas selection strategy is also used. Segmentationis performed based on the dense deformation fieldcomputed from the registration of selected structures inthe atlas image that have distinct boundaries, onto thepatient's image. This approach results in robustsegmentation of the structures of interest, even in thepresence of tumors, or anatomical differences between theatlas and the patient image. For each patient, an atlasimage is selected from the available atlas-database,based on the similarity metric value, computed afterperforming an affine registration between each image inthe atlas-database and the patient's image. Unlike manyof the previous approaches in the literature, thesimilarity metric is not computed over the entire imageregion; rather, it is computed only in the regions ofsoft tissue structures to be segmented. Qualitative andquantitative evaluation of the results is presented.
Resumo:
PURPOSE: To improve coronary magnetic resonance angiography (MRA) by combining a two-dimensional (2D) spatially selective radiofrequency (RF) pulse with a T2 -preparation module ("2D-T2 -Prep"). METHODS: An adiabatic T2 -Prep was modified so that the first and last pulses were of differing spatial selectivity. The first RF pulse was replaced by a 2D pulse, such that a pencil-beam volume is excited. The last RF pulse remains nonselective, thus restoring the T2 -prepared pencil-beam, while tipping the (formerly longitudinal) magnetization outside of the pencil-beam into the transverse plane, where it is then spoiled. Thus, only a cylinder of T2 -prepared tissue remains for imaging. Numerical simulations were followed by phantom validation and in vivo coronary MRA, where the technique was quantitatively evaluated. Reduced field-of-view (rFoV) images were similarly studied. RESULTS: In vivo, full field-of-view 2D-T2 -Prep significantly improved vessel sharpness as compared to conventional T2 -Prep, without adversely affecting signal-to-noise (SNR) or contrast-to-noise ratios (CNR). It also reduced respiratory motion artifacts. In rFoV images, the SNR, CNR, and vessel sharpness decreased, although scan time reduction was 60%. CONCLUSION: When compared with conventional T2 -Prep, the 2D-T2 -Prep improves vessel sharpness and decreases respiratory ghosting while preserving both SNR and CNR. It may also acquire rFoV images for accelerated data acquisition.
Resumo:
BACKGROUND: The bacterial flagellum is the most important organelle of motility in bacteria and plays a key role in many bacterial lifestyles, including virulence. The flagellum also provides a paradigm of how hierarchical gene regulation, intricate protein-protein interactions and controlled protein secretion can result in the assembly of a complex multi-protein structure tightly orchestrated in time and space. As if to stress its importance, plants and animals produce receptors specifically dedicated to the recognition of flagella. Aside from motility, the flagellum also moonlights as an adhesion and has been adapted by humans as a tool for peptide display. Flagellar sequence variation constitutes a marker with widespread potential uses for studies of population genetics and phylogeny of bacterial species. RESULTS: We sequenced the complete flagellin gene (flaA) in 18 different species and subspecies of Aeromonas. Sequences ranged in size from 870 (A. allosaccharophila) to 921 nucleotides (A. popoffii). The multiple alignment displayed 924 sites, 66 of which presented alignment gaps. The phylogenetic tree revealed the existence of two groups of species exhibiting different FlaA flagellins (FlaA1 and FlaA2). Maximum likelihood models of codon substitution were used to analyze flaA sequences. Likelihood ratio tests suggested a low variation in selective pressure among lineages, with an omega ratio of less than 1 indicating the presence of purifying selection in almost all cases. Only one site under potential diversifying selection was identified (isoleucine in position 179). However, 17 amino acid positions were inferred as sites that are likely to be under positive selection using the branch-site model. Ancestral reconstruction revealed that these 17 amino acids were among the amino acid changes detected in the ancestral sequence. CONCLUSION: The models applied to our set of sequences allowed us to determine the possible evolutionary pathway followed by the flaA gene in Aeromonas, suggesting that this gene have probably been evolving independently in the two groups of Aeromonas species since the divergence of a distant common ancestor after one or several episodes of positive selection. REVIEWERS: This article was reviewed by Alexey Kondrashov, John Logsdon and Olivier Tenaillon (nominated by Laurence D Hurst).
Resumo:
Peer-reviewed
Resumo:
In order to develop applications for z;isual interpretation of medical images, the early detection and evaluation of microcalcifications in digital mammograms is verg important since their presence is oftenassociated with a high incidence of breast cancers. Accurate classification into benign and malignant groups would help improve diagnostic sensitivity as well as reduce the number of unnecessa y biopsies. The challenge here is the selection of the useful features to distinguish benign from malignant micro calcifications. Our purpose in this work is to analyse a microcalcification evaluation method based on a set of shapebased features extracted from the digitised mammography. The segmentation of the microcalcificationsis performed using a fixed-tolerance region growing method to extract boundaries of calcifications with manually selected seed pixels. Taking into account that shapes and sizes of clustered microcalcificationshave been associated with a high risk of carcinoma based on digerent subjective measures, such as whether or not the calcifications are irregular, linear, vermiform, branched, rounded or ring like, our efforts were addressed to obtain a feature set related to the shape. The identification of the pammeters concerning the malignant character of the microcalcifications was performed on a set of 146 mammograms with their real diagnosis known in advance from biopsies. This allowed identifying the following shape-based parameters as the relevant ones: Number of clusters, Number of holes, Area, Feret elongation, Roughness, and Elongation. Further experiments on a set of 70 new mammogmms showed that the performance of the classification scheme is close to the mean performance of three expert radiologists, which allows to consider the proposed method for assisting the diagnosis and encourages to continue the investigation in the senseof adding new features not only related to the shape
Resumo:
The present work aimed to characterize and identify QTLs for wood quality and growth traits in E. grandis x E. urophylla hybrids. For this purpose a RAPD linkage map was developed for the hybrids (LOD=3 and r=0.40) containing 52 markers and 12 linkage groups. Traits related to wood quality and growth were evaluated in the QTL analyses. QTL analyses were performed using chi-square tests, single-marker, interval mapping and composite interval mapping analyses. All approaches led to the identification of similar QTLs associated with wood density, cellulose pulp yield and percentage of extractives, which were detected and confirmed by both the interval mapping and composite interval mapping methodologies. Some QTLs regions were confirmed only by the composite interval mapping methodology: percentage of soluble lignin, percentage of insoluble lignin, CBH and total height. Overlapping QTLs regions were detected, and these, can be the result of major genes involved in the regulation and control of the growth traits by epistatic interactions. In order to evaluate the effect of early selection using RAPD molecular data, molecular markers adjacent to QTLs were used genotype selection. The analysis of selection differential values suggests that for all the traits the phenotypic selection at seven years should generate larger genetic gains than early selection assisted by molecular markers and the combination of the strategies should elevate the selection efficiency.
Resumo:
Cardiac troponins (cTn) I and T are the current golden standard biochemical markers in the diagnosis and risk stratification of patients with suspected acute coronary syndrome. During the past few years, novel assays capable of detecting cTn‐concentrations in >50% of apparently healthy individuals have become readily available. With the emerging of these high sensitivity cTn assays, reductions in the assay specificity have caused elevations in the measured cTn levels that do not correlate with the clinical picture of the patient. The increased assay sensitivity may reveal that various analytical interference mechanisms exist. This doctoral thesis focused on developing nanoparticle‐assisted immunometric assays that could possibly be applied to an automated point‐of‐care system. The main objective was to develop minimally interference‐prone assays for cTnI by employing recombinant antibody fragments. Fast 5‐ and 15‐minute assays for cTnI and D‐dimer, a degradation product of fibrin, based on intrinsically fluorescent nanoparticles were introduced, thus highlighting the versatility of nanoparticles as universally applicable labels. The utilization of antibody fragments in different versions of the developed cTnI‐assay enabled decreases in the used antibody amounts without sacrificing assay sensitivity. In addition, the utilization of recombinant antibody fragments was shown to significantly decrease the measured cTnI concentrations in an apparently healthy population, as well as in samples containing known amounts of potentially interfering factors: triglycerides, bilirubin, rheumatoid factors, or human anti‐mouse antibodies. When determining the specificity of four commercially available antibodies for cTnI, two out of the four cross‐reacted with skeletal troponin I, but caused crossreactivity issues in patient samples only when paired together. In conclusion, the results of this thesis emphasize the importance of careful antibody selection when developing cTnI assays. The results with different recombinant antibody fragments suggest that the utilization of antibody fragments should strongly be encouraged in the immunoassay field, especially with analytes such as cTnI that require highly sensitive assay approaches.
Resumo:
Castor bean cropping has great social and economic value, but its production has been affected by factors such as low quality seeds used for sowing. The quick and precise evaluation of seed quality by x-ray test is known as an effective method to evaluate seed lots, but little is known about the interpretation between of the type of radiographic image and the seed quality correlation. The potential of x-ray analysis as a marker of seed physiological quality and as an initial process for the implementation of the use of computer-assisted image analysis was investigated using castor bean seeds of the different cultivars. The seeds were classified according to internal morphology visualized in the radiography and subjected to the germination test, emergency and seedling growth rate. It was possible to identify the different types of internal tissues, morphological and physical damage in castor bean seeds using the x-ray test. Tissues generating translucent images, embryo deformation, or tissues with less than 50% of endosperm reserves or spotted, negatively affected the physiological potential of the seed lots. Radiographic analysis is effective as an instrument to improve castor bean seed lot quality. This non destructive analysis allows the prediction of seedling performance and enabled the selection of high-quality seeds under the standards of a sustainable and precision agriculture
Resumo:
Pedicle screw insertion technique has made revolution in the surgical treatment of spinal fractures and spinal disorders. Although X- ray fluoroscopy based navigation is popular, there is risk of prolonged exposure to X- ray radiation. Systems that have lower radiation risk are generally quite expensive. The position and orientation of the drill is clinically very important in pedicle screw fixation. In this paper, the position and orientation of the marker on the drill is determined using pattern recognition based methods, using geometric features, obtained from the input video sequence taken from CCD camera. A search is then performed on the video frames after preprocessing, to obtain the exact position and orientation of the drill. An animated graphics, showing the instantaneous position and orientation of the drill is then overlaid on the processed video for real time drill control and navigation
Resumo:
In order to develop applications for z;isual interpretation of medical images, the early detection and evaluation of microcalcifications in digital mammograms is verg important since their presence is often associated with a high incidence of breast cancers. Accurate classification into benign and malignant groups would help improve diagnostic sensitivity as well as reduce the number of unnecessa y biopsies. The challenge here is the selection of the useful features to distinguish benign from malignant micro calcifications. Our purpose in this work is to analyse a microcalcification evaluation method based on a set of shapebased features extracted from the digitised mammography. The segmentation of the microcalcifications is performed using a fixed-tolerance region growing method to extract boundaries of calcifications with manually selected seed pixels. Taking into account that shapes and sizes of clustered microcalcifications have been associated with a high risk of carcinoma based on digerent subjective measures, such as whether or not the calcifications are irregular, linear, vermiform, branched, rounded or ring like, our efforts were addressed to obtain a feature set related to the shape. The identification of the pammeters concerning the malignant character of the microcalcifications was performed on a set of 146 mammograms with their real diagnosis known in advance from biopsies. This allowed identifying the following shape-based parameters as the relevant ones: Number of clusters, Number of holes, Area, Feret elongation, Roughness, and Elongation. Further experiments on a set of 70 new mammogmms showed that the performance of the classification scheme is close to the mean performance of three expert radiologists, which allows to consider the proposed method for assisting the diagnosis and encourages to continue the investigation in the sense of adding new features not only related to the shape
Resumo:
BACKGROUND. To use spectra acquired by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) from pre- and post-digital rectal examination (DRE) urine samples to search for discriminating peaks that can adequately distinguish between benign and malignant prostate conditions, and identify the peaks’ underlying biomolecules. METHODS. Twenty-five participants with prostate cancer (PCa) and 27 participants with a variety of benign prostatic conditions as confirmed by a 10-core tissue biopsy were included. Pre- and post-DRE urine samples were prepared for MALDI MS profiling using an automated clean-up procedure. Following mass spectra collection and processing, peak mass and intensity were extracted and subjected to statistical analysis to identify peaks capable of distinguishing between benign and cancer. Logistic regression was used to combine markers to create a sensitive and specific test. RESULTS. A peak at m/z 10,760 was identified as b-microseminoprotein (b-MSMB) and found to be statistically lower in urine from PCa participants using the peak’s average areas. By combining serum prostate-specific antigen (PSA) levels with MALDI MS-measured b-MSMB levels, optimum threshold values obtained from Receiver Operator characteristics curves gave an increased sensitivity of 96% at a specificity of 26%. CONCLUSIONS. These results demonstrate that with a simple sample clean-up followed by MALDI MS profiling, significant differences of MSMB abundance were found in post-DRE urine samples. In combination with PSA serum levels, obtained from a classic clinical assay led to high classification accuracy for PCa in the studied sample set. Our results need to be validated in a larger multicenter prospective randomized clinical trial.
Resumo:
This review is an output of the International Life Sciences Institute (ILSI) Europe Marker Initiative, which aims to identify evidence-based criteria for selecting adequate measures of nutrient effects on health through comprehensive literature review. Experts in cognitive and nutrition sciences examined the applicability of these proposed criteria to the field of cognition with respect to the various cognitive domains usually assessed to reflect brain or neurological function. This review covers cognitive domains important in the assessment of neuronal integrity and function, commonly used tests and their state of validation, and the application of the measures to studies of nutrition and nutritional intervention trials. The aim is to identify domain-specific cognitive tests that are sensitive to nutrient interventions and from which guidance can be provided to aid the application of selection criteria for choosing the most suitable tests for proposed nutritional intervention studies using cognitive outcomes. The material in this review serves as a background and guidance document for nutritionists, neuropsychologists, psychiatrists, and neurologists interested in assessing mental health in terms of cognitive test performance and for scientists intending to test the effects of food or food components on cognitive function.
Resumo:
Recent studies showed that features extracted from brain MRIs can well discriminate Alzheimer’s disease from Mild Cognitive Impairment. This study provides an algorithm that sequentially applies advanced feature selection methods for findings the best subset of features in terms of binary classification accuracy. The classifiers that provided the highest accuracies, have been then used for solving a multi-class problem by the one-versus-one strategy. Although several approaches based on Regions of Interest (ROIs) extraction exist, the prediction power of features has not yet investigated by comparing filter and wrapper techniques. The findings of this work suggest that (i) the IntraCranial Volume (ICV) normalization can lead to overfitting and worst the accuracy prediction of test set and (ii) the combined use of a Random Forest-based filter with a Support Vector Machines-based wrapper, improves accuracy of binary classification.