936 resultados para Marine sciences


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Marine Protected Areas (MPAs) are widely used as tools to maintain biodiversity, protect habitats and ensure that development is sustainable. If MPAs are to maintain their role into the future it is important for managers to understand how conditions at these sites may change as a result of climate change and other drivers, and this understanding needs to extend beyond temperature to a range of key ecosystem indicators. This case study demonstrates how spatially-aggregated model results for multiple variables can provide useful projections for MPA planners and managers. Conditions in European MPAs have been projected for the 2040s using unmitigated and globally managed scenarios of climate change and river management, and hence high and low emissions of greenhouse gases and riverborne nutrients. The results highlight the vulnerability of potential refuge sites in the north-west Mediterranean and the need for careful monitoring at MPAs to the north and west of the British Isles, which may be affected by changes in Atlantic circulation patterns. The projections also support the need for more MPAs in the eastern Mediterranean and Adriatic Sea, and can inform the selection of sites.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Marine Protected Areas (MPAs) are widely used as tools to maintain biodiversity, protect habitats and ensure that development is sustainable. If MPAs are to maintain their role into the future it is important for managers to understand how conditions at these sites may change as a result of climate change and other drivers, and this understanding needs to extend beyond temperature to a range of key ecosystem indicators. This case study demonstrates how spatially-aggregated model results for multiple variables can provide useful projections for MPA planners and managers. Conditions in European MPAs have been projected for the 2040s using unmitigated and globally managed scenarios of climate change and river management, and hence high and low emissions of greenhouse gases and riverborne nutrients. The results highlight the vulnerability of potential refuge sites in the north-west Mediterranean and the need for careful monitoring at MPAs to the north and west of the British Isles, which may be affected by changes in Atlantic circulation patterns. The projections also support the need for more MPAs in the eastern Mediterranean and Adriatic Sea, and can inform the selection of sites.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ecosystem engineers that increase habitat complexity are keystone species in marine systems, increasing shelter and niche availability, and therefore biodiversity. For example, kelp holdfasts form intricate structures and host the largest number of organisms in kelp ecosystems. However, methods that quantify 3D habitat complexity have only seldom been used in marine habitats, and never in kelp holdfast communities. This study investigated the role of kelp holdfasts (Laminaria hyperborea) in supporting benthic faunal biodiversity. Computer-aided tomography (CT-) scanning was used to quantify the three-dimensional geometrical complexity of holdfasts, including volume, surface area and surface fractal dimension (FD). Additionally, the number of haptera, number of haptera per unit of volume, and age of kelps were estimated. These measurements were compared to faunal biodiversity and community structure, using partial least-squares regression and multivariate ordination. Holdfast volume explained most of the variance observed in biodiversity indices, however all other complexity measures also strongly contributed to the variance observed. Multivariate ordinations further revealed that surface area and haptera per unit of volume accounted for the patterns observed in faunal community structure. Using 3D image analysis, this study makes a strong contribution to elucidate quantitative mechanisms underlying the observed relationship between biodiversity and habitat complexity. Furthermore, the potential of CT-scanning as an ecological tool is demonstrated, and a methodology for its use in future similar studies is established. Such spatially resolved imager analysis could help identify structurally complex areas as biodiversity hotspots, and may support the prioritization of areas for conservation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ecosystem engineers that increase habitat complexity are keystone species in marine systems, increasing shelter and niche availability, and therefore biodiversity. For example, kelp holdfasts form intricate structures and host the largest number of organisms in kelp ecosystems. However, methods that quantify 3D habitat complexity have only seldom been used in marine habitats, and never in kelp holdfast communities. This study investigated the role of kelp holdfasts (Laminaria hyperborea) in supporting benthic faunal biodiversity. Computer-aided tomography (CT-) scanning was used to quantify the three-dimensional geometrical complexity of holdfasts, including volume, surface area and surface fractal dimension (FD). Additionally, the number of haptera, number of haptera per unit of volume, and age of kelps were estimated. These measurements were compared to faunal biodiversity and community structure, using partial least-squares regression and multivariate ordination. Holdfast volume explained most of the variance observed in biodiversity indices, however all other complexity measures also strongly contributed to the variance observed. Multivariate ordinations further revealed that surface area and haptera per unit of volume accounted for the patterns observed in faunal community structure. Using 3D image analysis, this study makes a strong contribution to elucidate quantitative mechanisms underlying the observed relationship between biodiversity and habitat complexity. Furthermore, the potential of CT-scanning as an ecological tool is demonstrated, and a methodology for its use in future similar studies is established. Such spatially resolved imager analysis could help identify structurally complex areas as biodiversity hotspots, and may support the prioritization of areas for conservation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dechlorane Plus (DP) is a proposed alternative to the legacy flame retardant decabromodiphenyl ether (BDE-209), a major component of Deca-BDE formulations. In contrast to BDE-209, toxicity data for DP are scarce and often focused on mice. Validated dietary in vivo exposure of the marine bivalve (Mytilus galloprovincialis) to both flame retardants did not induce effects at the physiological level (algal clearance rate), but induced DNA damage, as determined by the comet assay, at all concentrations tested. Micronuclei formation was induced by both DP and BDE-209 at the highest exposure concentrations (100 and 200 mu g/L, respectively, at 18% above controls). DP caused effects similar to those by BDE-209 but at lower exposure concentrations (5.6, 56, and 100 mu g/L for DP and 56, 100, and 200 mu g/L for BDE-209). Moreover, bioaccumulation of DP was shown to be concentration dependent, in contrast to BDE-209. The results described suggest that DP poses a greater genotoxic potential than BDE-209

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dechlorane Plus (DP) is a proposed alternative to the legacy flame retardant decabromodiphenyl ether (BDE-209), a major component of Deca-BDE formulations. In contrast to BDE-209, toxicity data for DP are scarce and often focused on mice. Validated dietary in vivo exposure of the marine bivalve (Mytilus galloprovincialis) to both flame retardants did not induce effects at the physiological level (algal clearance rate), but induced DNA damage, as determined by the comet assay, at all concentrations tested. Micronuclei formation was induced by both DP and BDE-209 at the highest exposure concentrations (100 and 200 mu g/L, respectively, at 18% above controls). DP caused effects similar to those by BDE-209 but at lower exposure concentrations (5.6, 56, and 100 mu g/L for DP and 56, 100, and 200 mu g/L for BDE-209). Moreover, bioaccumulation of DP was shown to be concentration dependent, in contrast to BDE-209. The results described suggest that DP poses a greater genotoxic potential than BDE-209

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background The seas around Scotland are rich and diverse – Scotland’s position at the edge of the continental shelf, the long coastline, large area of sea and the mixing of warm and coldwater currents combine to make its waters a special place for marine wildlife and habitats. Scotland has over 18,000 km of coastline and its inshore and offshore areas are among the largest of any EU country, representing 13% of all European seas. Scotland’s seas are of outstanding scenic, historical and cultural value and are part of the national identity at home and abroad. The Marine (Scotland) Act 2010 and the UK Marine and Coastal Access Act 2009 include new powers and duties to ensure that our seas are managed sustainably for future generations, integrating the economic growth of marine industries with the need to protect these assets. Measures to conserve Scotland’s marine natural heritage are based on a three pillar approach, with action at the wider seas level (e.g. marine planning or sectoral controls); specific species conservation measures (e.g. improved protection for seals); and through site protection measures - the identification of new Marine Protected Areas (MPAs). To help target action under each of the three pillars, Scottish Natural Heritage (SNH) and the Joint Nature Conservation Committee (JNCC) have generated a focused list of habitats and species of priority conservation importance - the Priority Marine Features (PMFs). The aim of the current study was to produce a descriptive catalogue of the Scottish PMFs (including component habitats and species where appropriate) to serve as a reference for future nature conservation action. Whilst derived from available existing accounts, the succinct 1-page descriptions are written from a Scottish perspective, refining, but clearly linking to more generic UK, EC or OSPAR (Oslo and Paris Commission) commentary. Available information on the geographic distribution of the features was collated as part of the project and a summary map is provided in each description. Main findings  This project has generated a descriptive catalogue of the 81 PMFs that have been identified in the seas around Scotland (out to the limit of the UK continental shelf). The list comprises 26 broad habitats (e.g. burrowed mud), seven low or limited mobility species (e.g. ocean quahog) and 48 mobile species, including fish (e.g. blue ling) and marine mammals (e.g. minke whale).  Information on the distribution of the PMFs was collated within a Geographic Information System (GIS). This is the first time that data about such a diverse range of Scottish marine nature conservation interests have been compiled within a single repository. These data have and will be used in conjunction with other contextual base-mapping to inform the development of nature conservation advice and commentary (e.g. in the production of the Scotland’s Marine Atlas - Baxter et al., 2011).  The feature distribution mapping used in the production of this report is being made available to view online via the National Marine Plan Interactive web portal (NMPi - http://www.gov.scot/Topics/marine/seamanagement/nmpihome). As new or refined data on Scottish PMFs become available, these will be fed into updates to the project geodatabase and NMPi.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background The seas around Scotland are rich and diverse – Scotland’s position at the edge of the continental shelf, the long coastline, large area of sea and the mixing of warm and coldwater currents combine to make its waters a special place for marine wildlife and habitats. Scotland has over 18,000 km of coastline and its inshore and offshore areas are among the largest of any EU country, representing 13% of all European seas. Scotland’s seas are of outstanding scenic, historical and cultural value and are part of the national identity at home and abroad. The Marine (Scotland) Act 2010 and the UK Marine and Coastal Access Act 2009 include new powers and duties to ensure that our seas are managed sustainably for future generations, integrating the economic growth of marine industries with the need to protect these assets. Measures to conserve Scotland’s marine natural heritage are based on a three pillar approach, with action at the wider seas level (e.g. marine planning or sectoral controls); specific species conservation measures (e.g. improved protection for seals); and through site protection measures - the identification of new Marine Protected Areas (MPAs). To help target action under each of the three pillars, Scottish Natural Heritage (SNH) and the Joint Nature Conservation Committee (JNCC) have generated a focused list of habitats and species of priority conservation importance - the Priority Marine Features (PMFs). The aim of the current study was to produce a descriptive catalogue of the Scottish PMFs (including component habitats and species where appropriate) to serve as a reference for future nature conservation action. Whilst derived from available existing accounts, the succinct 1-page descriptions are written from a Scottish perspective, refining, but clearly linking to more generic UK, EC or OSPAR (Oslo and Paris Commission) commentary. Available information on the geographic distribution of the features was collated as part of the project and a summary map is provided in each description. Main findings  This project has generated a descriptive catalogue of the 81 PMFs that have been identified in the seas around Scotland (out to the limit of the UK continental shelf). The list comprises 26 broad habitats (e.g. burrowed mud), seven low or limited mobility species (e.g. ocean quahog) and 48 mobile species, including fish (e.g. blue ling) and marine mammals (e.g. minke whale).  Information on the distribution of the PMFs was collated within a Geographic Information System (GIS). This is the first time that data about such a diverse range of Scottish marine nature conservation interests have been compiled within a single repository. These data have and will be used in conjunction with other contextual base-mapping to inform the development of nature conservation advice and commentary (e.g. in the production of the Scotland’s Marine Atlas - Baxter et al., 2011).  The feature distribution mapping used in the production of this report is being made available to view online via the National Marine Plan Interactive web portal (NMPi - http://www.gov.scot/Topics/marine/seamanagement/nmpihome). As new or refined data on Scottish PMFs become available, these will be fed into updates to the project geodatabase and NMPi.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Anthropogenic climate change is causing unprecedented rapid responses in marine communities, with species across many different taxonomic groups showing faster shifts in biogeographic ranges than in any other ecosystem. Spatial and temporal trends for many marine species are difficult to quantify, however, due to the lack of long-term datasets across complete geographical distributions and the occurrence of small-scale variability from both natural and anthropogenic drivers. Understanding these changes requires a multidisciplinary approach to bring together patterns identified within long-term datasets and the processes driving those patterns using biologically relevant mechanistic information to accurately attribute cause and effect. This must include likely future biological responses, and detection of the underlying mechanisms in order to scale up from the organismal level to determine how communities and ecosystems are likely to respond across a range of future climate change scenarios. Using this multidisciplinary approach will improve the use of robust science to inform the development of fit-for-purpose policy to effectively manage marine environments in this rapidly changing world.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Anthropogenic climate change is causing unprecedented rapid responses in marine communities, with species across many different taxonomic groups showing faster shifts in biogeographic ranges than in any other ecosystem. Spatial and temporal trends for many marine species are difficult to quantify, however, due to the lack of long-term datasets across complete geographical distributions and the occurrence of small-scale variability from both natural and anthropogenic drivers. Understanding these changes requires a multidisciplinary approach to bring together patterns identified within long-term datasets and the processes driving those patterns using biologically relevant mechanistic information to accurately attribute cause and effect. This must include likely future biological responses, and detection of the underlying mechanisms in order to scale up from the organismal level to determine how communities and ecosystems are likely to respond across a range of future climate change scenarios. Using this multidisciplinary approach will improve the use of robust science to inform the development of fit-for-purpose policy to effectively manage marine environments in this rapidly changing world.