924 resultados para Marine pisciculture. Fish cytogenetics. Biotechnological processes. Interspecific hybridization
Resumo:
Interspecific hybridization can generate transgressive hybrid phenotypes with extreme trait values exceeding the combined range of the parental species. Such variation can enlarge the working surface for natural selection, and may facilitate the evolution of novel adaptations where ecological opportunity exists. The number of quantitative trait loci fixed for different alleles in different species should increase with time since speciation. If transgression is caused by complementary gene action or epistasis, hybrids between more distant species should be more likely to display transgressive phenotypes. To test this prediction we collected data on transgression frequency from the literature, estimated genetic distances between the hybridizing species from gene sequences, and calculated the relationship between the two using phylogenetically controlled methods. We also tested if parental phenotypic divergence affected the occurrence of transgression. We found a highly significant positive correlation between transgression frequency and genetic distance in eudicot plants explaining 43% of the variance in transgression frequency. In total, 36% of the measured traits were transgressive. The predicted effect of time since speciation on transgressive segregation was unconfounded by the potentially conflicting effects of phenotypic differentiation between species. Our analysis demonstrates that the potential impact hybridization may have on phenotypic evolution is predictable from the genetic distance between species.
Resumo:
The role of Pleistocene glacial cycles in forming the contemporary genetic structure of organisms has been well studied in China with a particular focus on the Tibetan Plateau. However, China has a complex topography and diversity of local climates, and how glacial cycles may have shaped the subtropical and tropical biota of the region remains mostly unaddressed. To investigate the factors that affected the phylogeography and population history of a widely distributed and nondeciduous forest species, we analysed morphological characters, mitochondrial DNA sequences and nuclear microsatellite loci in the Silver Pheasant (Lophura nycthemera). In a pattern generally consistent with phenotypic clusters, but not nominal subspecies, deeply divergent mitochondrial lineages restricted to different geographic regions were detected. Coalescent simulations indicated that the time of main divergence events corresponded to major glacial periods in the Pleistocene and gene flow was only partially lowered by drainage barriers between some populations. Intraspecific cytonuclear discordance was revealed in mitochondrial lineages from Hainan Island and the Sichuan Basin with evidence of nuclear gene flow from neighbouring populations into the latter. Unexpectedly, hybridization was revealed in Yingjiang between the Silver Pheasant and Kalij Pheasant (Lophura leucomelanos) with wide genetic introgression at both the mtDNA and nuclear levels. Our results highlight a novel phylogeographic pattern in a subtropical area generated from the combined effects of climate oscillation, partial drainage barriers and interspecific hybridization. Cytonuclear discordance combined with morphological differentiation implies that complex historical factors shaped the divergence process in this biodiversity hot spot area of southern China.
Resumo:
The Arctic Ocean is connected with the North Atlantic Ocean by the Fram Strait between Greenland and Svalbard. The strait is located in the northern part of the Greenland Sea. In the eastern part of the strait, warm saline water flows northward as the West Spitsbergen Current; while in the western part, cold less-saline water flows southward as the East Greenland Current. The northwestern part of the Greenland Sea is normally covered with sea ice even in summer. Furthermore, this region is regarded as a major area where the Arctic sea ice is discharged into mid latitude oceans. Thus, this area plays an important role in heat and salt exchange processes in the Arctic marine system. The reveal exchange processes of water masses and ocean-atmosphere interaction in high-latitude oceans, a number of international research programs have been focused on the Greenland Sea and its surrounding waters. As one of the international Arctic research programs, oceanographic studies have been executed in cooperation with the Norsk Polarinstitutt and other institutes under the leadership of the National Institute of Polar Research since 1991. Japanese scientists have been carrying out field observations in and around Svalbard. The observations include not only physical measurements but also biological surveys. This report presents physical oceanographic data obtained in the Greenland Sea in 1992 and 1993, and data around Svalbard from 1991 to 1993.
Resumo:
The concentration of CO2 in global surface ocean waters is increasing due to rising atmospheric CO2 emissions, resulting in lower pH and a lower saturation state of carbonate ions. Such changes in seawater chemistry are expected to impact calcification in calcifying marine organisms. However, other physiological processes related to calcification might also be affected, including enzyme activity. In a mesocosm experiment, macroalgal communities were exposed to three CO2 concentrations (380, 665, and 1486 µatm) to determine how the activity of two enzymes related to inorganic carbon uptake and nutrient assimilation in Corallina officinalis, an abundant calcifying rhodophyte, will be affected by elevated CO2 concentrations. The activity of external carbonic anhydrase, an important enzyme functioning in macroalgal carbon-concentrating mechanisms, was inversely related to CO2 concentration after long-term exposure (12 weeks). Nitrate reductase, the enzyme responsible for reduction of nitrate to nitrite, was stimulated by CO2 and was highest in algae grown at 665 µatm CO2. Nitrate and phosphate uptake rates were inversely related to CO2, while ammonium uptake was unaffected, and the percentage of inorganic carbon in the algal skeleton decreased with increasing CO2. The results indicate that the processes of inorganic carbon and nutrient uptake and assimilation are affected by elevated CO2 due to changes in enzyme activity, which change the energy balance and physiological status of C. officinalis, therefore affecting its competitive interactions with other macroalgae. The ecological implications of the physiological changes in C. officinalis in response to elevated CO2 are discussed.
Resumo:
The fate of redundant genes resulting from genome duplication is poorly understood. Previous studies indicated that ribosomal RNA genes from one parental origin are epigenetically silenced during interspecific hybridization or polyploidization. Regulatory mechanisms for protein-coding genes in polyploid genomes are unknown, partly because of difficulty in studying expression patterns of homologous genes. Here we apply amplified fragment length polymorphism (AFLP)–cDNA display to perform a genome-wide screen for orthologous genes silenced in Arabidopsis suecica, an allotetraploid derived from Arabidopsis thaliana and Cardaminopsis arenosa. We identified ten genes that are silenced from either A. thaliana or C. arenosa origin in A. suecica and located in four of the five A. thaliana chromosomes. These genes represent a variety of RNA and predicted proteins including four transcription factors such as TCP3. The silenced genes in the vicinity of TCP3 are hypermethylated and reactivated by blocking DNA methylation, suggesting epigenetic regulation is involved in the expression of orthologous genes in polyploid genomes. Compared with classic genetic mutations, epigenetic regulation may be advantageous for selection and adaptation of polyploid species during evolution and development.
Resumo:
Using multiple-choice feeding experiments, the selection of six species of macrophytes by the herbivorous rabbitfish Siganus fuscescens was examined. The rabbitfish showed distinct food choice in the laboratory; however, selection of macrophytes by S. fuscescens was not related to their absolute nutrient content (nitrogen, carbon, energy and ash free dry mass). Nutrient assimilation estimates showed that the macrophytes which were most preferred were those that S. fuscescens assimilated best. In S. fuscescens, the macrophytes that were preferred passed through the gut significantly faster than the less preferred species. Gut transit time had a significant effect on the absolute value of a food item in terms of net nutrient gain per unit time. This study showed that food value could be inferred from the absolute nutrient content of the macrophytes. Thus both the ability to assimilate nutrients as well as the absolute nutrient content of macrophytes must be quantified when assessing food value. (C) 2004 The Fisheries society of the British Isles.
Resumo:
We propose a new approach to the mathematical modelling of microbial growth. Our approach differs from familiar Monod type models by considering two phases in the physiological states of the microorganisms and makes use of basic relations from enzyme kinetics. Such an approach may be useful in the modelling and control of biotechnological processes, where microorganisms are used for various biodegradation purposes and are often put under extreme inhibitory conditions. Some computational experiments are performed in support of our modelling approach.
Resumo:
It is shown that sediments accumulated in the Southern Novaya Zemlya Trench at both deglaciation and marine stages. Permanent sea ice sheet existed during the deglaciation, and glacier meltwater was intensely delivered to the bottom layer. Along with the dominant sediment supply from the Southern Island of Novaya Zemlya, southern continental sources also played a noticeable role at that stage. Seasonal sea ice freezing led to the formation of cold brines at the marine stage. Like paleoproductivity, these processes were irregular. Dissolution of calcareous benthic foraminiferal tests considerably intensified after about 7 ka BP owing to a stronger Atlantic water advection into the Western Arctic and consequent increase in paleoproductivity, whereas the relative role of southern sedimentary provenances decreased. Sedimentation rates were constant (45 cm/ka) during the entire marine stage.
Resumo:
Bacterial collagenases are metalloproteinases involved in the degradation of the extracellular matrices of animal cells, due to their ability to digest native collagen. These enzymes are important virulence factors in a variety of pathogenic bacteria. Nonetheless, there is a lack of scientific consensus for a proper and well-defined classification of these enzymes and a vast controversy regarding the correct identification of collagenases. Clostridial collagenases were the first ones to be identified and characterized and are the reference enzymes for comparison of newly discovered collagenolytic enzymes. In this review we present the most recent data regarding bacterial collagenases and overview the functional and structural diversity of bacterial collagenases. An overall picture of the molecular diversity and distribution of these proteins in nature will also be given. Particular aspects of the different proteolytic activities will be contextualized within relevant areas of application, mainly biotechnological processes and therapeutic uses. At last, we will present a new classification guide for bacterial collagenases that will allow the correct and straightforward classification of these enzymes.
Resumo:
O papel exercido pelas bactérias é reconhecido como fundamental no metabolismo de qualquer sistema aquático, não só pela mineralização da matéria orgânica, como também pela transferência de matéria e energia para níveis tróficos superiores (“microbial loop”). Para a realização deste estudo foram escolhidos quatro lagos com diferentes estados tróficos no Campus Carreiros da Universidade Federal do Rio Grande – FURG - RS. O Lago Biguás e o da Base possuem características de ambientes eutrófico - hipereutrófico, enquanto que, o Lago Polegar é caracterizado como um ambiente oligo-mesotrófico e o Lago Negro é considerado um ambiente distrófico. Em um estudo anterior em nove lagos rasos nesta mesma região, incluindo os quatro analisados no presente trabalho, Souza (2007) sugeriu que as bactérias livres atuariam como mineralizadoras e o seu crescimento seria limitado pela disponibilidade de fosfato (controle “bottom-up”), enquanto que as bactérias aderidas participariam da decomposição dos agregados orgânicos. Também foi sugerido que as bactérias aderidas seriam controladas principalmente pela predação por flagelados e ciliados (controle “top-down”), provavelmente devido ao seu maior biovolume. Porém, estas informações foram obtidas a partir de relações estatísticas de dados coletados em uma única amostragem. Assim, neste estudo a comunidade bacteriana (abundância e biomassa) e outros parâmetros físicos, químicos e biológicos dos quatro lagos rasos sub-tropicais foram estudados em amostragens quinzenais no decorrer de um ano entre junho de 2008 e maio de 2009. Nossos resultados indicam que a disponibilidade de carbono orgânico dissolvido produzido pelo fitoplâncton parece ser um dos principais fatores controladores da dinâmica de bactérias nestes lagos. Entretanto, a predação no Lago Negro parece ter sido de maior magnitude no controle das bactérias neste ambiente, uma vez que não houve um incremento na abundância bacteriana deste lago proporcional ao incremento da clorofila a. A presença de um maior número de nano - e microflagelados neste lago dá suporte a esta hipótese. Para testar esta hipótese, foi realizado um experimento utilizando-se a Técnica da Diluição em conjunto com a técnica a de FISH (Hibridização in situ Fluorescente) para identificar as taxas de produção e consumo não só dos diferentes morfotipos, mas também dos diferentes grupos filogenéticos (Archaea, Eubacteria, Alfa- Beta- e Gama-Proteobacteria e Cytophaga-Flavobacter) de uma amostra de água do Lago Negro. Os resultados deste experimento indicaram que as bactérias estão, de fato, sendo consumidas por vi protozoários na mesma proporção que estão sendo produzidas. Além disso, no Lago Negro a predação parece estar vinculada ao tamanho/biovolume celular, sendo os morfotipos de tamanho reduzido mais resistentes a predação e, por isso, mais abundantes.
Resumo:
Chromosome microdissection is a technique in which whole chromosomes or chromosomal segments are dissected under an inverted microscope yielding chromosome-specific sequences. Several protocol modifications introduced during the past 15 years reduced the number of chromosomes required for most applications. This is of particular interest to fish molecular cytogenetics, since most species present highly uniform karyotypes which make impossible the collection of multiple copies of the same chromosome. Probes developed in this manner can be used to investigate chromosome homologies in closely related species. Here we describe a protocol recently used in the gymnotiform species group Eigenmannia and review the major steps involved in the generation of these markers focusing on protocol modifications aiming to reduce the number of required chromosomes.
Resumo:
SummarySimultaneous detection of aneuploidies for chromosomes 4, 6,10 and 17 by automated four color l-FISH in high hyperdiploid acute lymphoblastic leukemia: diagnostic assessment, clonal heterogeneity and chromosomal instability in adultsAnna Talamo BlandinService de Génétique Médicale, Unité de Cytogénétique du Cancer, CHUVAcute lymphoblastic leukemia (ALL) is a malignant hemopathy characterized by the accumulation of the immature lymphoid cells in the bone marrow and, most often, in the peripheral blood. ALL is a heterogeneous disease with distinct biological and prognostic entities. At diagnosis, cytogenetic and molecular findings constitute important and independent prognostic factors. High hyperdiploidy with 51-67 chromosomes (HeH), one of the largest cytogenetic subsets of ALL, in childhood particularly, is generally associated with a relatively favorable outcome. Chromosome gain is nonrandom, extracopies of some chromosome occurring more frequently than those of others. Concurrent presence of trisomy for chromosomes 4, 10 and 17 confers an especially good prognosis. The first aim of our work was to develop an automated four color interphase fluorescence in situ hybridization (l-FISH) methodology and to assess its ability to detect concurrent aneuploidies 4, 6, 10 and 17 in 10 ALL patients. Various combinations of aneuploidies were identified. All clones detected by conventional cytogenetics were also observed by l-FISH. However, in all patients, l-FISH revealed numerous additional abnormal clones, leading to a high level of clonal heterogeneity. Our second aim has been to investigate the nature and origin of this clonal heterogeneity and to test for the presence of chromosome instability (CIN) in HeH ALL at initial presentation. Ten HeH ALL and 10 non-HeH ALL patients were analysed by four colour l-FISH and numerical CIN values were determined for all four chromosomes together and for each chromosome and patient group, an original approach in ALL. CIN values in HeH ALL proved to be much higher than#iose in non-HeH ALL, suggesting that numerical CIN may be at the origin of the high level of clonal heterogeneity revealed by l-FISH. Our third aim has been to study the evolution of these cytogenetic features during the course of the disease in 10 HeH ALL patients. Clonal heterogeneity was also observed again during disease progression, particularly at relapse. Clones detected at initial presentation generally reappeared in relapse, in most cases with newly generated ones. A significant correlation between the number of abnormal clones and CIN suggested that the higher the instability, the larger the number of abnormal clones. Whereas clonal heterogeneity and its evolution most probably result from underlying chromosome instability, operating processes remain conjectural.RésuméLa leucémie lymphoblastique aiguë (LLA) est une hémopathie maligne qui résulte de l'accumulationde cellules lymphoïdes immatures dans la moelle osseuse, et, le plus souvent, dans le sangpériphérique également. La LLA est une affection hétérogène au sein de laquelle se distinguentplusieurs entités biologiques et pronostiques. Les données cytogénétiques et moléculaires font partieintégrante du diagnostic et jouent un rôle essentiel dans l'évaluation du pronostic. L'hyperdiploïdieélevée à 51-67 chromosomes (HeH), relativement fréquente, en particulier chez l'enfant, s'associe àun pronostic favorable. Le gain de chromosomes ne relève pas du hasard, certains chromosomesétant plus fréquemment impliqués que d'autres. La présence simultanée des trisomies 4, 6, et 17s'associe à un pronostic particulièrement bon. Le premier but du travail a été de développer uneméthode d'analyse automatique par hybridation in situ fluorescente interphasique (I-FISH) à 4couleurs et de tester sa capacité à identifier la présence simultanée d'aneuploïdies 4, 6, 10 et 17 dans10 cas de LLA. Différentes combinaisons d'aneuploïdies ont été identifiées. Tous les clones détectéspar cytogénétique conventionnelle l'ont été par I-FISH. Or, chez tous les patients, l'I-FISH a révélé denombreux clones anormaux additionnels générant un degré élevé d'hétérogénéité clonale. Notredeuxième but a été d'investiguer la nature et l'origine de cette hétérogénéité et de tester la présenced'instabilité chromosomique (CIN) chez les patients avec une LLA HeH en presentation initiale. DixLLA HeH et 10 LLA non-HeH ont été analysées par I-FISH et les valeurs de CIN numérique ont étédéterminées pour les 4 chromosomes ensemble et pour chaque chromosome et groupe de patients,approche originale dans la LLA. Ces valeurs étant beaucoup plus élevées dans la LLA HeH que dansla LLA non-HeH, elles favorisent l'hypothèse selon laquelle la CIN serait à l'origine de l'hétérogénéitéclonale révélée par I-FISH. Le troisième but de notre travail a été d'étudier l'évolution de cescaractéristiques cytogénétiques au cours de la maladie dans 10 cas de LLA HeH. L'hétérogénéitéclonale a été retrouvée lors de la progression de la maladie, en particulier en rechute, où les clonesanormaux détectés en présentation initiale réapparaissent, généralement accompagnés de clonesnouveaux. La corrélation existant entre nombre de clones anormaux et valeurs de CIN suggère queplus l'instabilité est élevée, plus le nombre de clones anormaux est grand. Bien que l'hétérogénéitéclonale et son évolution résultent très probablement de l'instabilité chromosomique, les processus àl'oeuvre ne sont pas entièrement élucidés.
Resumo:
Interphase cytogenetics, utilizing fluorescence in situ hybridization (FISH) techniques, has been successfully applied to diffuse and solid tissue specimens. Most studies have been performed on isolated cells, such as blood or bone marrow cells; a few have been performed on cells from body fluids, such as amniotic fluid, urine, sperm, and sputum. Mechanically or chemically disaggregated cells from solid tissues have also been used as single cell suspensions for FISH. Additionally, intact organized tissue samples represented by touch preparations or thin tissue sections have been used, especially in cancer studies. Advantages and pitfalls of application of FISH methodology to each type of specimen and some significant biological findings achieved are illustrated in this overview.
Resumo:
Fluorescence in situ hybridization (FISH) using telomeric and ribosomal sequences was performed in four species of toad genus Chaunus: C. ictericus, C. jimi, C. rubescens and C. schneideri. Analyses based on conventional, C-banding and Ag-NOR staining were also carried out. The four species present a 2n = 22 karyotype, composed by metacentric and submetacentric chromosomes, which were indistinguishable either after conventional staining or banding techniques. Constitutive heterochromatin was predominantly located at pericentromeric regions, and telomeric sequences (TTAGGG)(n) were restricted to the end of all chromosomes. Silver staining revealed Ag-NORs located at the short arm of pair 7, and heteromorphism in size of NOR signals was also observed. By contrast, FISH with ribosomal probes clearly demonstrated absence of any heteromorphism in size of rDNA sequences, suggesting that the difference observed after Ag-staining should be attributed to differences in chromosomal condensation and/or gene activity rather than to the number of ribosomal cistrons.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)