980 resultados para Marine Ecosystem
Resumo:
Major coastal storms, associated with strong winds, high waves and intensified currents, and occasionally with heavy rains and flash floods, are mostly known because of the serious damage they can cause along the shoreline and the threats they pose to navigation. However, there is a profound lack of knowledge on the deep-sea impacts of severe coastal storms. Concurrent measurements of key parameters along the coast and in the deep-sea are extremely rare. Here we present a unique data set showing how one of the most extreme coastal storms of the last decades lashing the Western Mediterranean Sea rapidly impacted the deep-sea ecosystem. The storm peaked the 26th of December 2008 leading to the remobilization of a shallow-water reservoir of marine organic carbon associated with fine particles and resulting in its redistribution across the deep basin. The storm also initiated the movement of large amounts of coarse shelf sediment, which abraded and buried benthic communities. Our findings demonstrate, first, that severe coastal storms are highly efficient in transporting organic carbon from shallow water to deep water, thus contributing to its sequestration and, second, that natural, intermittent atmospheric drivers sensitive to global climate change have the potential to tremendously impact the largest and least known ecosystem on Earth, the deep-sea ecosystem.
Resumo:
Major coastal storms, associated with strong winds, high waves and intensified currents, and occasionally with heavy rains and flash floods, are mostly known because of the serious damage they can cause along the shoreline and the threats they pose to navigation. However, there is a profound lack of knowledge on the deep-sea impacts of severe coastal storms. Concurrent measurements of key parameters along the coast and in the deep-sea are extremely rare. Here we present a unique data set showing how one of the most extreme coastal storms of the last decades lashing the Western Mediterranean Sea rapidly impacted the deep-sea ecosystem. The storm peaked the 26th of December 2008 leading to the remobilization of a shallow-water reservoir of marine organic carbon associated with fine particles and resulting in its redistribution across the deep basin. The storm also initiated the movement of large amounts of coarse shelf sediment, which abraded and buried benthic communities. Our findings demonstrate, first, that severe coastal storms are highly efficient in transporting organic carbon from shallow water to deep water, thus contributing to its sequestration and, second, that natural, intermittent atmospheric drivers sensitive to global climate change have the potential to tremendously impact the largest and least known ecosystem on Earth, the deep-sea ecosystem.
Resumo:
Macroalgae is the dominant trophic group on Mediterranean infralittoral rocky bottoms, whereas zooxanthellate corals are extremely rare. However, in recent years, the invasive coral Oculina patagonica appears to be increasing its abundance through unknown means. Here we examine the pattern of variation of this species at a marine reserve between 2002 and 2010 and contribute to the understanding of the mechanisms that allow its current increase. Because indirect interactions between species can play a relevant role in the establishment of species, a parallel assessment of the sea urchin Paracentrotus lividus, the main herbivorous invertebrate in this habitat and thus a key species, was conducted. O. patagonica has shown a 3-fold increase in abundance over the last 8 years and has become the most abundant invertebrate in the shallow waters of the marine reserve, matching some dominant erect macroalgae in abundance. High recruitment played an important role in this increasing coral abundance. The results from this study provide compelling evidence that the increase in sea urchin abundance may be one of the main drivers of the observed increase in coral abundance. Sea urchins overgraze macroalgae and create barren patches in the space-limited macroalgal community that subsequently facilitate coral recruitment. This study indicates that trophic interactions contributed to the success of an invasive coral in the Mediterranean because sea urchins grazing activity indirectly facilitated expansion of the coral. Current coral abundance at the marine reserve has ended the monopolization of algae in rocky infralittoral assemblages, an event that could greatly modify both the underwater seascape and the sources of primary production in the ecosystem.
Resumo:
The end-Permian mass extinction greatly diminished marine diversity and brought about a whole-scale restructuring of marine ecosystems; these ecosystem changes also profoundly affected the sedimentary record. Data presented here, attained through facies analyses of strata deposited during the immediate aftermath of the end-Permian mass extinction (southern Turkey) and at the close of the Early Triassic (southwestern United States), in combination with a literature review, show that sedimentary systems were profoundly affected by: (1) a reduction in biotic diversity and abundance and (2) long-term environmental fluctuations that resulted from the end-Permian crisis. Lower Triassic strata display widespread microbialite and carbonate seafloor fan development and contain indicators of suppressed infaunal bioturbation such as flat-pebble conglomerates and wrinkle structures (facies considered unusual in post-Cambrian subtidal deposits). Our observations suggest that depositional systems, too, respond to biotic crises, and that certain facies may act as barometers of ecologic and environmental change independent of fossil assemblage analyses. Close investigation of facies changes during other critical times in Earth history may serve as an important tool in interpreting the ecology of metazoans and their environment.
Resumo:
The human exploitation of marine resources is characterised by the preferential removal of the largest species. Although this is expected to modify the structure of food webs, we have a relatively poor understanding of the potential consequences of such alteration. Here, we take advantage of a collection of ancient consumer tissues, using stable isotope analysis and SIBER to assess changes in the structure of coastal marine food webs in the South-western Atlantic through the second half of the Holocene as a result of the sequential exploitation of marine resources by hunter-gatherers, western sealers and modern fishermen. Samples were collected from shell middens and museums. Shells of both modern and archaeological intertidal herbivorous molluscs were used to reconstruct changes in the stable isotopic baseline, while modern and archaeological bones of the South American sea lion Otaria flavescens, South American fur seal Arctocephalus australis and Magellanic penguin Spheniscus magellanicus were used to analyse changes in the structure of the community of top predators. We found that ancient food webs were shorter, more redundant and more overlapping than current ones, both in northern-central Patagonia and southern Patagonia. These surprising results may be best explained by the huge impact of western sealing on pinnipeds during the fur trade period, rather than the impact of fishing on fish populations. As a consequence, the populations of pinnipeds at the end of the sealing period were likely well below the ecosystem's carrying capacity, which resulted in a release of intraspecific competition and a shift towards larger and higher trophic level prey. This in turn led to longer and less overlapping food webs.
Resumo:
Rapid changes in biodiversity are occurring globally, as a consequence of anthropogenic disturbance. This has raised concerns, since biodiversity is known to significantly contribute to ecosystem functions and services. Marine benthic communities participate in numerous functions provided by soft-sedimentary ecosystems. Eutrophication-induced oxygen deficiency is a growing threat against infaunal communities, both in open sea areas and in coastal zones. There is thus a need to understand how such disturbance affects benthic communities, and what is lost in terms of ecosystem functioning if benthic communities are harmed. In this thesis, the status of benthic biodiversity was assessed for the open Baltic Sea, a system severely affected by broad-scale hypoxia. Long-term monitoring data made it possible to establish quantitative biodiversity baselines against which change could be compared. The findings show that benthic biodiversity is currently severely impaired in large areas of the open Baltic Sea, from the Bornholm Basin to the Gulf of Finland. The observed reduction in biodiversity indicates that benthic communities are structurally and functionally impoverished in several of the sub-basins due to the hypoxic stress. A more detailed examination of disturbance impacts (through field studies and -experiments) on benthic communities in coastal areas showed that changes in benthic community structure and function took place well before species were lost from the system. The degradation of benthic community structure and function was directed by the type of disturbance, and its specific temporal and spatial characteristics. The observed shifts in benthic trait composition were primarily the result of reductions in species’ abundances, or of changes in demographic characteristics, such as the loss of large, adult bivalves. Reduction in community functions was expressed as declines in the benthic bioturbation potential and in secondary biomass production. The benthic communities and their degradation accounted for a substantial proportion of the changes observed in ecosystem multifunctionality. Individual ecosystem functions (i.e. measures of sediment ecosystem metabolism, elemental cycling, biomass production, organic matter transformation and physical structuring) were observed to differ in their response to increasing hypoxic disturbance. Interestingly, the results suggested that an impairment of ecosystem functioning could be detected at an earlier stage if multiple functions were considered. Importantly, the findings indicate that even small-scale hypoxic disturbance can reduce the buffering capacity of sedimentary ecosystem, and increase the susceptibility of the system towards further stress. Although the results of the individual papers are context-dependent, their combined outcome implies that healthy benthic communities are important for sustaining overall ecosystem functioning as well as ecosystem resilience in the Baltic Sea.
Resumo:
The present study focuses on the biochemical aspects of six islands belonging to Lakshadweep Archipelago – namely Kavaratti, Kadamath, Kiltan, Androth, Agathy and Minicoy. Lakshadweep, which is an area biologically significant due to isolation from the major coastline, remains as one of the least studied areas in Indian Ocean. The work, processed out the distributional pattern of trace metals among the biotic (corols, sea weeds and sea grass) and abiotic component (sediments) of ecosystem. An effort is made to picturise the spatial distribution pattern of different forms of nitrogen and phosphorus in the various sedimentary environments of the study area. Studies on the biogeochemical and nutrient aspects of the concerned study area scanty. In Lakshadweep, the local life is very dependent on reefs and its resources. The important stress which produce a threatening effort on the existence for coral reefs are anthropogenic-namely-organic and inorganic pollution from sewage, agricultural and industrial waters, sediment damage from excessive land cleaning, and over exploitation particularly through destructive fishing methods. In addition these one other more localized or less service anthropogenic stress: pollution by oil and other hydrocarbons, complex organic molecular and heavy metal pollution, and destructive engineering practices.
Resumo:
The mangrove ecosystem is one of the earth’s most endangered ecosystems. In this study, geochemical features of three mangrove ecosystems, Mangalavanam, Vypeen and Nettoor were compared. Water, sediment and core samples were collected from these stations for a period of one year. Nutrients, organic compounds orgnic carbon and hydrographical parameters of the samples were estimated. The present study revealed higher concentration of carbon in the surface sediments. The major temporary or ultimate sink for various pollutants in estuaries is the sedimentary reservoir, including intertidal areas. In the present study, higher values for dissolved nutrients, POC and carbohydrates were observed during low tide.
Resumo:
Food and feeding habits of fourteen demersal finfishes exploited off the Karnataka coast were studied to investigate trophic interactions within the marine food web. Index of Relative Importance (lRI),Ontogenetic, seasonal (pre-monsoon, monsoon and post-monsoon) variation in feeding and prey-predator relationship studies were conducted.The results of prey-predator trophic interaction studies identified four major trophic guilds based on the predators feeding similarity.Trophic guild I is 'copepod and detritus fceders'with an average group similarity of 61.4%. The second trophic guild, 'prawn and crab feeders'with an average similarity of 52.7%. 'Acetes feeders', the largest trophic guild with an average group similarity of 62.5%, composed of six demersal finfish species.The guild 'piscivores' is constituted by C. limba/us and P. arsius with an average similarity of 45%.For each predator, ontogenetic diet shift is common and is characterized by prey of low to high trophic level.Strong selection of certain prey types was observed in some predators while most of them avoided abundant prey.In addition to Acetes spp, strong predation impact was observed for penaeid prawns, epibenthic crabs and detritus.This information on trophic guilds and prey-predator interactions can be used to construct trophic model on the benthic ecosystem off Karnataka and to investigate fishery induced changes as well as predation impact of different animals on commercially important demersals
Resumo:
Department of Marine Biology, Cochin University of Science & Technology
Resumo:
This thesis Entitled Marine actinomycetes as source of antimicrobial compounds and as probiotics and single cell protein for application in penaeid peawn culture systems. Ocean harbours more than 80% of all life on earth and remains our greatest untapped natural resource. The study revealed the potential of marine actinomycetes as a source of antimicrobial compounds. The selected streptomycetes were found to be capable of inhibiting most of the pathogenic vibrios, whichis a major problem both in hatcheries and grow out systems. The bioactive principle can be incorporated with commercial feeds and applied as medicated diet for the control of vibrios in culture systems.The hydrolytic potential inhibitory property against pathogens and non—pathogenicity to penaeid prawns make the selected Streptomycesspp.an effective probioic in aquaculture. Since there is considerably less inhibition to the natural in pond ecosystem the microbial diversityis being maintained and thereby the water quality. Actinomycetes was found to be a good source of single cell protein as an ingredient inaquaculture feed formulations. Large amount of mycelial waste (actinomycete biomassO is produced from antibiotic industries and this nutrient rich waste can be effectively used as a protein source in aquaculture feeds.This study reveals the importance of marine actinomycetes as a source of antimicrobial compounds and as a probiotic and single cell protein for aquaculture applications.
Resumo:
The present work deals with the characterization of polyhydroxyalkanoates accumulating vibrios from marine benthic environments and production studies of polyhydroxyalkanoates by vibrio sp.BTKB33. Vibrios are a group of (iram negative, curved or straight motile rods that normally inhabit the aquatic environments.The present study therefore aimed at evaluating the occurrence of PHA accumulating vibrios inhabiting marine benthic environments; characterizing the potential PHA accumulators employing phenotypic and genotypic approaches and molecular characterization of the PHA synthase gene. The study also evaluated the PHA production in V:'hri0 sp. strain BTKB33, through submerged fennentation using statistical optimization and characterized the purified biopolymer. Screening for PHA producing vibrios from marine benthic environments. Characterization of PHA producers employing phenotypic and genotypic approaches.The incidence of PHA accumulation in Vibrio sp. isolated from marine sediments was observed to be high, indicating that the natural habitat of these bacteria are stressful. Considering their ubiquitous nature, the ecological role played by vibrios in maintaining the delicate balance of the benthic ecosystem besides returning potential strains, with the ability to elaborate a plethora of extracellular enzymes for industrial application, is significant. The elaboration of several hydrolytic enzymes by individuals also emphasize the crucial role of vibrios in the mineralization process in the marine environment. This study throws light on the extracellular hydrolytic enzyme profile exhibited by vibrios. It was concluded that apart from the PHA accumulation, presence of exoenzyme production and higher MAR index also aids in their survival in the highly challenging benthic enviromnents. The phylogenetic analysis of the strains and studies on intra species variation within PHA accumulating strains reveal their diversity. The isolate selected for production in this study was Vibrio sp. strain BTKB33, identified as V.azureus by 16S rDNA sequencing and phenotypic characterization. The bioprocess variables for PHA production utilising submerged fermentation was optimized employing one-factor-at-a-time-method, PB design and RSM studies. The statistical optimization of bioprocess variables revealed that NaCl concentration, temperature and incubation period are the major bioprocess variables influencing PHA production and PHA content. The presence of Class I PHA synthase genes in BTKB33 was also unveiled. The characterization of phaC genes by PCR and of the extracted polymer employing FTIR and NMR analysis revealed the presence of polyhydroxybutyrate, smallest known PI-IAs, having wider domestic, industrial and medical application. The strain BTKB33 bearing a significant exoenzyme profile, can thus be manipulatedin future for utilization of diverse substrates as C- source for PHA production. In addition to BTKB33, several fast growing Vibrio sp. having PHA accumulating ability were also isolated, revealing the prospects of this environment as a mine for novel PHA accumulating microbes. The findings of this study will provide a reference for further research in industrial production of PHAs from marine microorganisms .
Resumo:
The present study on "Microbial production of antibiotics from mangrove ecosystem” was carried out for a period of one year in four selected Stations, Mangalavana, Narakkal, Puthuvyppu and light house area of Puthuvyppu (9°55' — 10°10'N and 76°10‘ - 76°20'E) from January to December 1991. Though much emphasis has been given to occurrence and distribution of actinomycetes, an attempt was also made to understand the distribution patterns of other micro flora in the sediments. Data on physico-chemical parameters were also collected to find out their relationship if any with the microflora. The principle interest of the present investigation is to determineseasonal variations of antagonistic actinomycetes in selected mangrove ecosystem. The microbial interrelationship in mangrove sediments was found out by constructing the ratio between bacteria and actinomycetes, bacteria and fungi, fungi and actinomycetes. In addition temperature, pH, salinity, dissolved oxygen and organic carbon were determined seasonally and their possible relationship was statistically analyzed and the results are presented. Isolated actinomycetes were subjected to cross streak assay to know their nature of antibiotic activity against test fish pathogens and crude antibiotics were extracted from selected isolates and their inhibitory activity is studied and the results are discussed.