958 resultados para Many-body


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We introduce and formalize the concept of information flux in a many-body register as the influence that the dynamics of a specific element receive from any other element of the register. By quantifying the information flux in a protocol, we can design the most appropriate initial state of the system and, noticeably, the distribution of coupling strengths among the parts of the register itself. The intuitive nature of this tool and its flexibility, which allow for easily manageable numerical approaches when analytic expressions are not straightforward, are greatly useful in interacting many-body systems such as quantum spin chains. We illustrate the use of this concept in quantum cloning and quantum state transfer and we also sketch its extension to nonunitary dynamics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It has been suggested (Gribakin et al 1999 Aust. J. Phys. 52 443–57, Flambaum et al 2002 Phys. Rev. A 66 012713) that strongly enhanced low-energy electron recombination observed in Au25+ (Hoffknecht et al 1998 J. Phys. B: At. Mol. Opt. Phys. 31 2415–28) is mediated by complex multiply excited states, while simple dielectronic excitations play the role of doorway states for the electron capture process. We present the results of an extensive study of con?guration mixing between doubly excited (doorway) states and multiply excited states which account for the large electron recombination rate on Au25+ . A detailed analysis of spectral statistics and statistics of eigenstate components shows that the dielectronic doorway states are virtually ‘dissolved’ in complicated chaotic multiply excited eigenstates. This work provides a justi?cation for the use of statistical theory to calculate the recombination rates of Au25+ and similar complex multiply charged ions. We also investigate approaches which allow one to study complex chaotic many-body eigenstates and criteria of strong con?guration mixing, without diagonalizing large Hamiltonian matrices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We use many-body theory to find the asymptotic behaviour of second-order correlation corrections to the energies and positron annihilation rates in many- electron systems with respect to the angular momenta l of the single-particle orbitals included. The energy corrections decrease as 1/(l+1/2)4, in agreement with the result of Schwartz, whereas the positron annihilation rate has a slower 1/(l+1/2)2 convergence rate. We illustrate these results by numerical calculations of the energies of Ne and Kr and by examining results from extensive con?guration-interaction calculations of PsH binding and annihilation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A theory of strongly interacting Fermi systems of a few particles is developed. At high excit at ion energies (a few times the single-parti cle level spacing) these systems are characterized by an extreme degree of complexity due to strong mixing of the shell-model-based many-part icle basis st at es by the residual two- body interaction. This regime can be described as many-body quantum chaos. Practically, it occurs when the excitation energy of the system is greater than a few single-particle level spacings near the Fermi energy. Physical examples of such systems are compound nuclei, heavy open shell atoms (e.g. rare earths) and multicharged ions, molecules, clusters and quantum dots in solids. The main quantity of the theory is the strength function which describes spreading of the eigenstates over many-part icle basis states (determinants) constructed using the shell-model orbital basis. A nonlinear equation for the strength function is derived, which enables one to describe the eigenstates without diagonalization of the Hamiltonian matrix. We show how to use this approach to calculate mean orbital occupation numbers and matrix elements between chaotic eigenstates and introduce typically statistical variable s such as t emperature in an isolated microscopic Fermi system of a few particles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Absolute three-photon detachment cross sections are calculated for the fluorine negative ion within the lowest-order perturbation theory. The Dyson equation of the atomic many-body theory is used to obtain the ground-state 2p wavefunction with correct asymptotic behaviour, corresponding to the true (experimental) binding energy. We show that in accordance with the adiabatic theory this is crucial for obtaining absolute values of the multiphoton cross sections. Comparisons with other calculations and experimental data are presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An idealized jellium model of conducting nanowires with a geometric constriction is investigated by density functional theory (DFT) in the local spin density (LSD) approximation. The results reveal a fascinating variety of spin and charge patterns arising in wires of sufficiently low (r(s) >= 15) average electron density, pinned at the indentation by an apparent attractive interaction with the constriction. The spin-resolved frequency-dependent conductivity shows a marked asymmetry in the two spin channels, reflecting the spontaneous spin polarization around the wire neck. The relevance of the computational results is discussed in relation to the so-called 0.7 anomaly found by experiments in the low-frequency conductivity of nanowires at near-breaking conditions (see 2008 J. Phys.: Condens Matter 20, special issue on the 0.7 anomaly). Although our mean-field approach cannot account for the intrinsic many-body effects underlying the 0.7 anomaly, it still provides a diagnostic tool to predict impending transitions in the electronic structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ensembles of charged particles (plasmas) are a highly complex form of matter, most often modeled as a many-body system characterized by weak inter-particle interactions (electrostatic coupling). However, strongly-coupled plasma configurations have recently been produced in laboratory, either by creating ultra-cold plasmas confined in a trap or by manipulating dusty plasmas in discharge experiments. In this paper, the nonlinear aspects involved in the motion of charged dust grains in a one-dimensional plasma monolayer (crystal) are discussed. Different types of collective excitations are reviewed, and characteristics and conditions for their occurrence in dusty plasma crystals are discussed, in a quasi-continuum approximation. Dust crystals are shown to support nonlinear kink-shaped supersonic solitary longitudinal excitations, as well as modulated envelope localized modes associated with longitudinal and transverse vibrations. Furthermore, the possibility for intrinsic localized modes (ILMs) — Discrete Breathers (DBs) — to occur is investigated, from first principles. The effect of mode-coupling is also briefly considered. The relation to previous results on atomic chains, and also to experimental results on strongly-coupled dust layers in gas discharge plasmas, is briefly discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We describe the properties of a pair of ultracold bosonic atoms in a one-dimensional harmonic trapping potential with a tunable zero-ranged barrier at the trap center. The full characterization of the ground state is done by calculating the reduced single-particle density, the momentum distribution, and the two-particle entanglement. We derive several analytical expressions in the limit of infinite repulsion (Tonks-Girardeau limit) and extend the treatment to finite interparticle interactions by numerical solution. As pair interactions in double wells form a fundamental building block for many-body systems in periodic potentials, our results have implications for a wide range of problems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study the changes in the spatial distribution of vortices in a rotating Bose-Einstein condensate due to an increasing eccentricity of the trapping potential. By breaking the rotational symmetry, the vortex system undergoes a rich variety of structural changes, including the formation of zigzag and linear configurations. These spatial rearrangements are well signaled by the change in the behavior of the vortex-pattern eigenmodes against the eccentricity parameter. This behavior allows to actively control the distribution of vorticity in many-body systems and opens the possibility of studying interactions between quantum vortices over a large range of parameters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We provide an extensive discussion on a scheme for Hamiltonian tomography of a spin-chain model that does not require state initialization [Phys. Rev. Lett. 102 ( 2009) 187203]. The method has spurred the attention of the physics community interested in indirect acquisition of information on the dynamics of quantum many-body systems and represents a genuine instance of a control-limited quantum protocol.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Some thermodynamical properties of solids, such as heat capacity and magnetic susceptibility, have recently been shown to be linked to the amount of entanglement in a solid. However, this entanglement may appear a mere mathematical artefact of the typical symmetrization procedure of many-body wavefunction in solid state physics. Here we show that this entanglement is physical, demonstrating the principles of its extraction from a typical solid-state system by scattering two particles off the system. Moreover, we show how to simulate this process using present day optical lattice technology. This demonstrates not only that entanglement exists in solids but also that it can be used for quantum information processing or as a test of Bell's inequalities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Probing non trivial magnetic ordering in quantum magnets realized with ultracold lattice gases demands detection methods with some spatial resolution built on it. Here we demonstrate that the Faraday matter-light interface provides an experimentally feasible tool to distinguish indubitably different quantum phases of a given many-body system in a non-demolishing way. We illustrate our approach by focussing on the Heisenberg chain for spin-1 bosons in the presence of a SU(2) symmetry breaking field. We explain how using the light signal obtained via homodyne detection one can reconstruct the phase diagram of the model. Further we show that the very same technique that provides a direct experimentally measurable signal of different order parameters can be extended to detect also the presence of multipartite entanglement in such systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study quantum correlations in an isotropic Ising ring under the effects of a transverse magnetic field. After characterizing the behavior of two-spin quantum correlations, we extend our analysis to global properties of the ring, using a figure of merit for quantum correlations that shows enough sensitivity to reveal the drastic changes in the properties of the system at criticality. This opens up the possibility to relate statistical properties of quantum many-body systems to suitably tailored measures of quantum correlations that capture features going far beyond standard quantum entanglement.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A report is presented of the XIIth International Workshop on Positron and Positronium Physics (Sandbjerg, Denmark, 19-21 July 2003). This workshop covered positron and positronium interactions with atoms, molecules and condensed matter systems. One key development reported was the first creation in the laboratory of low-energy antihydrogen atoms. Facets of positron-electron many-body systems were also considered, including the positronium molecule and BEC gases of positronium atoms. Aspects of the future of the field were discussed, including the development of new theoretical and experimental capabilities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Calculations of ?-spectra for positron annihilation on a selection of molecules, including methane and its fluoro-substitutes, ethane, propane, butane and benzene are presented. The annihilation ?-spectra characterise the momentum distribution of the electron-positron pair at the instant of annihilation. The contribution to the ?-spectra from individual molecular orbitals is obtained from electron momentum densities calculated using modern computational quantum chemistry density functional theory tools. The calculation, in its simplest form, effectively treats the low-energy (thermalised, room-temperature) positron as a plane wave and gives annihilation ?-spectra that are about 40% broader than experiment, although the main chemical trends are reproduced. We show that this effective 'narrowing' of the experimental spectra is due to the action of the molecular potential on the positron, chiefly, due to the positron repulsion from the nuclei. It leads to a suppression of the contribution of small positron-nuclear separations where the electron momentum is large. To investigate the effect of the nuclear repulsion, as well as that of short-range electron-positron and positron-molecule correlations, a linear combination of atomic orbital description of the molecular orbitals is employed. It facilitates the incorporation of correction factors which can be calculated from atomic many-body theory and account for the repulsion and correlations. Their inclusion in the calculation gives -spectrum linewidths that are in much better agreement with experiment. Furthermore, it is shown that the effective distortion of the electron momentum density, when it is observed through positron annihilation -spectra, can be approximated by a relatively simple scaling factor. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.