605 resultados para Malária falciparum
Resumo:
Malaria, also popularly known as maleita , intermittent fever, paludism, impaludism, third fever or fourth fever, is an acute infectious febrile disease, which, in human beings, is caused by four species: Plasmodium falciparum, P. vivax, P. malariae and P. ovale. Malaria, one of the main infectious diseases in the world, is the most important parasitoses, with 250 million annual cases and more than 1 million deaths per year, mainly in children younger than live years of age. The prophylactic and therapeutic arsenal against malaria is quite restricted, since all the antimalarials currently in use have some limitation. Many plant species belonging to several families have been tested in vivo, using the murine experimental model Plasmodium berghei or in vitro against P. falciparum, and this search has been directed toward plants with antithermal, antimalarial or antiinflammatory properties used in popular Brazilian bolk medicine. Studies assessing the biological activity of medicinal plant essential oils have revealed activities of interest, such as insecticidal, spasmolytic and antiplasmodic action. It has also been scientifically established that around 60% of essential oils have antifungal properties and that 35% exhibit antibacterial properties. In our investigation, essential oils were obtained from the species Vanillosmopsis arborea, Lippia sidoides and Croton zethneri which are found in the bioregion of Araripe-Ceará. The chemical composition of these essential oils was partially characterized and the presence of monoterpenes and sesquiterpenes. The acute toxicity of these oils was assessed in healthy mice at different doses applied on a single day and on four consecutive days, and in vitro cytotoxicity in HeLa and Raw cell lines was determined at different concentrations. The in vivo tests obtained lethal dose values of 7,1 mg/Kg (doses administered on a single day) and 1,8 mg/Kg (doses administered over four days) for 50% of the animals. In the in vitro tests, the inhibitory concentration for 50% of cell growth in Hela cell lines was 588 μg/mL (essential oil from C. zethneri after 48 h), from 340-555 μg/mL (essential oil from L. sidoides, after 24 and 48 h). The essential oil from V. arborea showed no cytotoxicity and none of the essential oils were cytotoxic in Raw cell lines. These data suggest a moderate toxicity in the essential XVIII oils under study, a finding that does not impede their testing in in vivo antimalarial assays. Was shown the antimalarial activity of the essential oils in mice infected with P. berghei was assessed. The three species showed antimalarial activity from 36%-57% for the essential oil from the stem of V. arborea; from 32%-82% for the essential oil from the leaves of L. sidoides and from 40%-70% of reduction for the essential oil from the leaves of C. zethneri. This is the first study showing evidence of antimalarial activity with these species from northeast Brazil. Further studies to isolate the active ingredients of these oils are needed to determine if a single active ingredient accounts for the antimalarial activity or if a complex integration of all the compounds present occurs, a situation reflected in their biological activity
Resumo:
Resistance of Plasmodium falciparum to the usual antimalarials, as well as their adverse effects and high cost, has led to the search of new drugs against malaria. Several of these have been developed from medicinal plants based on ethnopharmacology, including the most widely used antimalarials today: quinine and artemisinin. In the present study schizonticide activity of extracts and fractions of a number of medicinal plants from the Caatinga and Amazon biomes were assessed based on ethnopharmacological and chemosystematic information. These included Ximenia americana, Maytenus rigida, Sideroxylon obtusifolium, Stryphnodendro coriaceum, Bowdichia virgiliodes, Schinopis brasiliensis and Picrolemma sprucei, the last, an Amazon species. Antimalarial tests of blood schizonticides were conducted in Swiss mice infected with P. berghei and in vitro against P. falciparum. In vitro cytotoxicity studies were carried out using HeLa, CHO, 3T3, Raw and HEPG2 cell lines. Except for X. americana, all species exhibited in vivo or in vitro antimalarial activity, inhibiting parasitic growth by up to 79%. Extracts exhibited moderate toxicity with dosedependent kinetics. In this sense, ethnopharmacological and chemosystematic approaches were shown to be useful and promising tools in the search of new drugs. These findings represent a significant contribution to scientific knowledge of the antimalarial potential of Brazilian flora, thereby opening perspectives for the development of new antimalarials
Resumo:
Malaria is a major parasitic disease worldwide, accounting for about 500 million cases and causing 2 million to 3 million deaths annually. Four species are responsible for transmitting this disease to humans: Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae and Plasmodium ovale. The parasite resistance to antimalarial drugs and the usual limitations of the vector control implications are contributing to the spread of the disease. The most of significant advances in the search for new antimalarial drugs is based on natural components, the main ones being currently used antimalarial drugs derived from plants. Research on natural products of marine origin (particularly algae) show that some species possess antiplasmodial activity. Knowing that the coast of Rio Grande do Norte is home to several species of algae, the present study was to evaluate, for the first time, the antimalarial activity of ethanolic extracts of seaweed Spatoglossum schroederi, Gracilaria birdiae and Udotea flabellum against Plasmodium falciparum 3D7 strain tests and in vitro using the murine model (Plasmodium berghei) for evaluation in vivo. These species were ground, macerated with ethanol for 24 hours and the extracts concentrated in rotaevaporador (45 ° C ± 5 ° C). For in vitro tests, the extracts were diluted and tested at concentrations between 100 and 1.56 μg/ml (seven concentrations in triplicate), in order to obtain IC50 of each extract. The cytotoxicity tests with macrophages and BGM were performed using the MTT colorimetric assay. BGM macrophages and cells were distributed in 96 wells per plate (1x 105 to macrophages and 1x104 cells per well for BGM) and incubated for 24h at 37 ° C. The ethanol extracts were diluted and tested at concentrations of 100 to 1,56 μg/ml (seven concentrations in triplicate). After periods of 24 hours of incubation with the extracts, 100 μg of MTT was added to each well, and 3 hours elapsed, the supernatant was removed and added 200 μl of DMSO in each well. The absorbance of each well was obtained by reading on a spectrophotometer at 570 nm filter. To evaluate the acute toxicity in vivo, Swiss mice received a single dose (oral) 2000 mg/kg/animal of each extract tested. The parameters of acute toxicity were observed for 8 days. For in vivo tests, Swiss mice were inoculated with 1x105 erythrocytes infected with P. berghei. The treatment was given first to fourth day after infection with 0.2 ml of the extracts in doses of 1000 and 500 mg//g animal. The negative control group received 0.2 ml of 2% Tween-20, whereas the positive control group received sub-dose of chloroquine (5 mg/kg/animal). The assessment of antimalarial activity was done by suppressing suppressing the parasitemia at 5 and 7 days after infection. The growth inhibition of parasites was determined relative to negative control (% inhibition = parasitaemia in control - parasitemia in sample / parasitemia control x 100), the mortality of animals was monitored daily for 30 days The results showed that algae Spatoglossum schroederi and Udotea flabellum showed antimalarial activity in vitro, with reduced parasitemia of 70.54% and 54, respectively. The extracts of the three algae tested showed moderate to high cytotoxicity. Algae S. schroederi and U. flabellum were active against P. berghei only at doses of 500 mg / kg with reduction ranging from 54.58 to 52.65% for the fifth day and from 32.24 to 47.34% for the seventh day, respectively. No toxicity was observed in vivo at the dose tested, over the 8 days of observation. Although preliminary data, the bioactive components in those possible seaweed may be promising for the development of new anti-malarial drugs
Resumo:
Malaria is a disease of global distribution, recognized by governments around the world as a serious public health problem, affecting more than 109 countries and territories and endangering more than 3.3 billion people. The economic costs of this disease are also relevant: the African continent itself has malaria-related costs of about $ 12 billion annually. Nowadays, in addition to chloroquine, Plasmodium falciparum is resistant to many drugs used in the treatment of malaria, such as amodiaquine, mefloquine, quinine and sulfadoxine-pyrimethamine; resistance of Plasmodium vivax to treatments, although less studied, is also reported. Nature, in general, is responsible for the production of most known organic substances, and the plant kingdom is responsible for the most of the chemical diversity known and reported in the literature. Most medicinal plants commercialized in Brazil, however, are of exotic origin, which makes the search for endemic medicinal plants, besides a patent necessity, a fascinating subject of academic research and development. This study aimed to: (i) verify the antimalarial activity of ethanolic and hydroalcoholic extracts of Boerhavia paniculata Rich. And acetonic extract of Clethra scabra Pers. in Swiss albino mice infected by Plasmodium berghei NK65, (ii) observe possible combined effects between the course of infection by P. berghei NK65 and administration of these extracts in Swiss albino mice, and (iii) conduct a preliminary study of the acute toxicity of these extracts in Swiss albino mice. All extracts notable pharmacological activities - with parasite infections inhibitions ranging from 22% to 54%.These characteristics suggest that the activities are relevant, although comparatively lower than the activity displayed by the positive control group (always above 90%). The general framework of survival analysis demonstrates an overall reduction in survival times for all groups. Necroscopy has not pointed no change in color, shape, size and/or consistency in the evaluated organs - the only exception was the livers of rats submitted to treatment to hydroalcoholic extracts: these organs have been presented in a slightly congestive aspect with mass increasing roughly 28% higher than the other two groups and a p-value of 0.0365. The 250 mg/Kg ethanolic group has been pointed out by the Dunn s post test, as the only class with simultaneous inequalities (p<0.05) between positive and negative control groups. The extracts, notably ethanol extract, have, in fact, a vestigial antimalarial activity, although well below from the ones perceived to chloroquine-treated groups; nevertheless, the survival times of the animals fed with the extracts do not rise by presence of such therapy. Both the toxicopharmacological studies of the synergism between the clinical course of malaria and administration of extracts and the isolated evaluation of toxicity allow us to affirm the absence of toxicity of the extracts at the level of CNS and ANS, as well as their non-influence on food and water consumption patterns, until dosages of 500 mg/Kg. Necroscopic analysis leads us to deduct a possible hepatotoxic effect of hydroalcoholic extract at dosages of 500 mg/Kg, and an innocuous tissue activity of the ethanol extract, in the same dosage. We propose a continuation of the studies of these extracts, with protocol modifications capable of addressing more clearly and objectively their pharmacological and toxicological aspects
Resumo:
The development of epidemiological practices in the last years of the nineteenth and early twentieth century was characterized by both an influence of medical geography and the emergence of microbes and vectors of diseases. Both theories were used to explain outbreaks in Rio Grande do Norte specially in Natal. In this process were organized new institutions linked to public health, unhealthy spaces and prescribed hygiene measures. The redefinitions of the spaces were linked to updated elements of Hippocratic medicine such as aerism and emphasis on medical topography. How the physicians of the town were organized in the face of new meanings and fields of expertise in the demarcation of diseases and regulation of their own practices against the illegal medical practitioners? Likewise, the very occurrence of epidemics mobilized people, urban institutions and apparatuses. But how the Hippocratic legacy that leads to the idea of bad air originated by swamps from the eighteenth and nineteenth century has been linked to new microbial assumptions and disease vectors in the early twentieth century? How an invader from Africa, (the mosquito A. gambiae) mobilized transnational efforts to combat malaria and redefined the epidemiological practices? The aim of this work is to understand how epidemiological practices redefine the way we define spaces, practices and disease from both an approach influenced by a relational history of spaces and a theoretical synergy which includes topics in Science Studies, Post Structuralist Geography and some elements of Feminist Studies. Documentary research were surveyed in the reports of the provincial presidents, government posts to the Provincial Assembly, specialized medical articles and theses, and documents from the Rockefeller Foundation and national and international journals. In this regard shall be given to both material and discursive aspects of space-related practical epidemiological that Natal as much (in general) Rio Grande do Norte between bad air and malaria.
Resumo:
Em agosto de 1983 foram observados 85 habitantes do Município de Humaitá, Estado do Amazonas, Brasil, com a finalidade de estudar a prevalência dos antígenos de HLA -A, -B, -C e DR, dentre os quais 38 eram doentes com malária causada pelo Plasmodium falciparum Todos eles foram examinados para avaliação de esplenomegalia, exame parasitológico de sangue e pesquisa de anticorpos de malária. Foram constituídos três grupos: (I) 25 indivíduos nascidos na região Amazônica que nunca tiveram malária; (II) 38 indivíduos naturais da Amazônia que tinham sido tratados de malária no passado, ou que estavam tendo malária atual, e (III) 22 doentes com malária que contraíram na Amazônia e eram procedentes de outras regiões do Brasil. Foram colhidas amostras de sangue de cada um deles, separados os linfôcitos e os antígenos de HLA foram tipados pelo teste de microlinfocitotoxidade. Houve elevada freqüência de antígenos não identificados, nos grupos estudados, o que sugere ou a existência de homozigoze, oufenôtipo não identificado nessa população. Houve alta freqüência fenotípica de antígeno deAg(W24) (44,7%) no Grupo II, quando comparado ao Grupo 1(32%) ou Grupo III (9%). Os indivíduos do Grupo II mostraram também elevada freqüência do antígeno DR4 (80%) quando comparado ao Grupo 1(36,3%) ou Grupo III(16,6%). Essas observações sugerem a possibilidade de suscetibilidadegenética ã malária entre os nativos da Amazônia e indicam a necessidade da realização de inquéritos mais extensos sobre a freqüência de antígenos de HLA em habitantes de zona endêmica de malária.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The merozoite surface protein-2 (MSP-2) of Plasmodium falciparum comprises repeats flanked by dimorphic domains defining the allelic families FC27 and IC1. Here, we examined sequence diversity at the msp-2 locus in Brazil and its impact on MSP-2 antibody recognition by local patients. Only 25 unique partial sequences of msp-2 were found in 61 isolates examined. The finding of identical msp-2 sequences in unrelated parasites, collected 6-13 years apart, suggests that no major directional selection is exerted by variant-specific immunity in this malaria-endemic area. To examine antibody cross-reactivity, recombinant polypeptides derived from locally prevalent and foreign MSP-2 variants were used in ELISA. Foreign IC1-type variants, such as 3D7 (currently tested for human vaccination), were less frequently recognized than FC27-type and local IC1-type variants. Antibodies discriminated between local and foreign IC1-type variants, but cross-recognized structurally different local IC1-type variants. The use of evolutionary models of MSP-2 is suggested to design vaccines that minimize differences between local parasites and vaccine antigens. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
O estudo compreendeu a avaliação da deficiência de Glicose-6-Fosfato Desidrogenase (G6PD) e perfil hematológico em 122 indivíduos (69 homens e 53 mulheres), com idade variando entre 3 a 84 anos, selecionados conforme a aceitação em participação no estudo, residentes na área urbana e rural do município de Porto Velho, Rondônia, Brasil, no período de julho de 2003 a agosto de 2004. A análise foi realizada utilizando-se o método da glicose NaNO2, e hemograma completo. Foram detectados quatro indivíduos do sexo masculino com deficiência da G6PD, sendo 5,8% entre os homens e 3,3% do total analisado. Dos indivíduos com deficiência da G6PD nenhum apresentava malária, através de diagnóstico realizado pela gota espessa corado pelo Giemsa. Entre os homens, 19 (27,5%) apresentaram malária, sendo 15 por Plasmodium vivax e quatro por Plasmodium falciparum; 48 (69,5%) apresentaram valores de hemoglobina abaixo de 14,0 g/dl, e 26 (37,6%) apresentaram valores eritrocitários abaixo do 4,5 milhões/mm³. Entre as mulheres apenas duas (3,7%) apresentaram malária por Plasmodium vivax; 24 (45,2%) apresentaram valores de hemoglobina abaixo de 12,0 g/dl, e 12 (22,6%) apresentaram massa eritrocitária abaixo de 4,0 milhões/mm³. A eosinofilia esteve presente em 47 (68,1%) dos homens e em 34 (64,1%) das mulheres. A incidência de deficiência da G6PD foi significativa na população masculina que procurou assistência médica devido a sintomas febris. Considerando que a primaquina é utilizada para o tratamento da malária vivax e falciparum, o risco de ocorrência de hemólise intravascular grave entre os indivíduos é significante. O teste utilizado é muito simples e de baixo custo e sugerimos a adoção desta metodologia na rotina dos laboratórios de atendimento público em áreas endêmicas de malária.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A avaliação antropométrica (pêso, altura, circunferência branquial, prega cutânea tricipital, prega cutânea subescapular, índice de Quetelet e circunferência muscular do braço) e bioquímica (proteínas e lipides) foi realizado em 120 indivíduos (93 masculinos e 27 do sexo feminino), de 17 a 72 anos de idade, moradores de área endêmica de malária (Humaitá -AM). de acordo com a história da doença (malária) eles foram divididos em 4 grupos: G1 - controle (n = 30), sem história de malária; G2 - controle (n = 40), com história de malária, mas sem manifestação de doença atual; G3 - doentes com Plasmodium vivax (n = 19) e G4 - doentes com Plasmodium faleiparum (n = 31). O diagnóstico de malária foi estabelecido por manifestações clínicas e confirmado laboratorialmente (gota espessa e esfregaço). No global as medidas antropométricas e bioquímicas discriminaram os grupos diferentemente. As medidas antropométricas do pêso, altura, reservas calóricas e estoque proteicos somáticos, apresentaram pouca sensibilidade, discriminado apenas os grupos extremos (Gl > G4). As medidas bioquímicas, no geral diferenciaram dois grandes grupos, os sadios e os doentes (G1+G2) e (G3+G4). Os doentes com Plasmodium falciparum (G4) foram os que se apresentaram em pior estado nutricional para a maioria das variáveis, sem entretanto, nenhuma variável individual que os discriminasse significativamente do G3. Estes dados permitem concluir que a malária resulta em desnutrição do hospedeiro, cuja gravidade está relacionada ao tipo e estágio da doença.
Resumo:
The recent evolution of Plasmodium falciparum is at odds with the extensive polymorphism found in most genes coding for antigens. Here, we examined the patterns and putative mechanisms of sequence diversification in the merozoite surface protein-2 (MSP-2), a major malarial repetitive surface antigen. We compared the msp-2 gene sequences from closely related clones derived from sympatric parasite isolates from Brazilian Amazonia and used microsatellite typing to examine, in these same clones, the haplotype background of chromosome 2, where msp-2 is located. We found examples of msp-2 sequence rearrangements putatively created by nonreciprocal recombinational events, such as replication slippage and gene conversion, while maintaining the chromosome haplotype. We conclude that these nonreciprocal recombination events may represent a major source of antigenic diversity in MSP-2 in P falciparum populations with low rates of classical meiotic recombination. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Cyclin-dependent kinases (CDKs) have been identified as potential targets for development of drugs, mainly against cancer. These studies generated a vast library of chemical inhibitors of CDKs, and some of these molecules can also inhibit kinases identified in the Plasmodium falciparum genome. Here we describe structural models for Protein Kinase 6 from P. falciparum (PfPK6) complexed with Roscovitine and Olomoucine. These models show clear structural evidence for differences observed in the inhibition, and may help designing inhibitors for PfPK6 generating new potential drugs against malaria.
Resumo:
Purine nucleoside phosphorylase (PNP) catalyzes the reversible phosphorolysis of nucleosides and deoxynucleosides, generating ribose 1-phosphate and the purine base, which is an important step of purine catabolism pathway. The lack of such an activity in humans, owing to a genetic disorder, causes T-cell impairment, and thus drugs that inhibit human PNP activity have the potential of being utilized as modulators of the immunological system to treat leukemia, autoimmune diseases, and rejection in organ transplantation. Besides, the purine salvage pathway is the only possible way for apicomplexan parasites to obtain the building blocks for RNA and DNA synthesis, which makes PNP from these parasites an attractive target for drug development against diseases such as malaria. Hence, a number of research groups have made efforts to elucidate the mechanism of action of PNP based on structural and kinetic studies. It is conceivable that the mechanism may be different for PNPs from diverse sources, and influenced by the oligomeric state of the enzyme in solution. Furthermore, distinct transition state structures can make possible the rational design of specific inhibitors for human and apicomplexan enzymes. Here, we review the current status of these research efforts to elucidate the mechanism of PNP-catalyzed chemical reaction, focusing on the mammalian and Plamodium falciparum enzymes, targets for drug development against, respectively, T-Cell and Apicomplexan parasites-mediated diseases.