457 resultados para Maire
Resumo:
Continuing achievements in hardware technology are bringing ubiquitous computing closer to reality. The notion of a connected, interactive and autonomous environment is common to all sensor networks, biosystems and radio frequency identification (RFID) devices, and the emergence of significant deployments and sophisticated applications can be expected. However, as more information is collected and transmitted, security issues will become vital for such a fully connected environment. In this study the authors consider adding security features to low-cost devices such as RFID tags. In particular, the authors consider the implementation of a digital signature architecture that can be used for device authentication, to prevent tag cloning, and for data authentication to prevent transmission forgery. The scheme is built around the signature variant of the cryptoGPS identification scheme and the SHA-1 hash function. When implemented on 130 nm CMOS the full design uses 7494 gates and consumes 4.72 mu W of power, making it smaller and more power efficient than previous low-cost digital signature designs. The study also presents a low-cost SHA-1 hardware architecture which is the smallest standardised hash function design to date.
Resumo:
The provision of security in mobile ad hoc networks is of paramount importance due to their wireless nature. However, when conducting research into security protocols for ad hoc networks it is necessary to consider these in the context of the overall system. For example, communicational delay associated with the underlying MAC layer needs to be taken into account. Nodes in mobile ad hoc networks must strictly obey the rules of the underlying MAC when transmitting security-related messages while still maintaining a certain quality of service. In this paper a novel authentication protocol, RASCAAL, is described and its performance is analysed by investigating both the communicational-related effects of the underlying IEEE 802.11 MAC and the computational-related effects of the cryptographic algorithms employed. To the best of the authors' knowledge, RASCAAL is the first authentication protocol which proposes the concept of dynamically formed short-lived random clusters with no prior knowledge of the cluster head. The performance analysis demonstrates that the communication losses outweigh the computation losses with respect to energy and delay. MAC-related communicational effects account for 99% of the total delay and total energy consumption incurred by the RASCAAL protocol. The results also show that a saving in communicational energy of up to 12.5% can be achieved by changing the status of the wireless nodes during the course of operation. Copyright (C) 2009 G. A. Safdar and M. P. O'Neill (nee McLoone).
Resumo:
Side-channel attacks (SCA) threaten electronic cryptographic devices and can be carried out by monitoring the physical characteristics of security circuits. Differential Power Analysis (DPA) is one the most widely studied side-channel attacks. Numerous countermeasure techniques, such as Random Delay Insertion (RDI), have been proposed to reduce the risk of DPA attacks against cryptographic devices. The RDI technique was first proposed for microprocessors but it was shown to be unsuccessful when implemented on smartcards as it was vulnerable to a variant of the DPA attack known as the Sliding-Window DPA attack.Previous research by the authors investigated the use of the RDI countermeasure for Field Programmable Gate Array (FPGA) based cryptographic devices. A split-RDI technique wasproposed to improve the security of the RDI countermeasure. A set of critical parameters wasalso proposed that could be utilized in the design stage to optimize a security algorithm designwith RDI in terms of area, speed and power. The authors also showed that RDI is an efficientcountermeasure technique on FPGA in comparison to other countermeasures.In this article, a new RDI logic design is proposed that can be used to cost-efficiently implementRDI on FPGA devices. Sliding-Window DPA and realignment attacks, which were shown to beeffective against RDI implemented on smartcard devices, are performed on the improved RDIFPGA implementation. We demonstrate that these attacks are unsuccessful and we also proposea realignment technique that can be used to demonstrate the weakness of RDI implementations.
Resumo:
As a potential alternative to CMOS technology, QCA provides an interesting paradigm in both communication and computation. However, QCAs unique four-phase clocking scheme and timing constraints present serious timing issues for interconnection and feedback. In this work, a cut-set retiming design procedure is proposed to resolve these QCA timing issues. The proposed design procedure can accommodate QCAs unique characteristics by performing delay-transfer and time-scaling to reallocate the existing delays so as to achieve efficient clocking zone assignment. Cut-set retiming makes it possible to effectively design relatively complex QCA circuits that include feedback. It utilizes the similar characteristics of synchronization, deep pipelines and local interconnections common to both QCA and systolic architectures. As a case study, a systolic Montgomery modular multiplier is designed to illustrate the procedure. Furthermore, a nonsystolic architecture, an S27 benchmark circuit, is designed and compared with previous designs. The comparison shows that the cut-set retiming method achieves a more efficient design, with a reduction of 22%, 44%, and 46% in terms of cell count, area, and latency, respectively.
Resumo:
Quantum-dot Cellular Automata (QCA) technology is a promising potential alternative to CMOS technology. To explore the characteristics of QCA and suitable design methodologies, digital circuit design approaches have been investigated. Due to the inherent wire delay in QCA, pipelined architectures appear to be a particularly suitable design technique. Also, because of the pipeline nature of QCA technology, it is not suitable for complicated control system design. Systolic arrays take advantage of pipelining, parallelism and simple local control. Therefore, an investigation into these architectures in QCA technology is provided in this paper. Two case studies, (a matrix multiplier and a Galois Field multiplier) are designed and analyzed based on both multilayer and coplanar crossings. The performance of these two types of interconnections are compared and it is found that even though coplanar crossings are currently more practical, they tend to occupy a larger design area and incur slightly more delay. A general semi-conductor QCA systolic array design methodology is also proposed. It is found that by applying a systolic array structure in QCA design, significant benefits can be achieved particularly with large systolic arrays, even more so than when applied in CMOS-based technology.