922 resultados para Macroarray, Microarray
High-resolution microarray analysis of chromosome 20q in human colon cancer metastasis model systems
Resumo:
Amplification of human chromosome 20q DNA is the most frequently occurring chromosomal abnormality detected in sporadic colorectal carcinomas and shows significant correlation with liver metastases. Through comprehensive high-resolution microarray comparative genomic hybridization and microarray gene expression profiling, we have characterized chromosome 20q amplicon genes associated with human colorectal cancer metastasis in two in vitro metastasis model systems. The results revealed increasing complexity of the 20q genomic profile from the primary tumor-derived cell lines to the lymph node and liver metastasis derived cell lines. Expression analysis of chromosome 20q revealed a subset of over expressed genes residing within the regions of genomic copy number gain in all the tumor cell lines, suggesting these are Chromosome 20q copy number responsive genes. Bases on their preferential expression levels in the model system cell lines and known biological function, four of the over expressed genes mapping to the common intervals of genomic copy gain were considered the most promising candidate colorectal metastasis-associated genes. Validation of genomic copy number and expression array data was carried out on these genes, with one gene, DNMT3B, standing out as expressed at a relatively higher levels in the metastasis-derived cell lines compared with their primary-derived counterparts in both the models systems analyzed. The data provide evidence for the role of chromosome 20q genes with low copy gain and elevated expression in the clonal evolution of metastatic cells and suggests that such genes may serve as early biomarkers of metastatic potential. The data also support the utility of the combined microarray comparative genomic hybridization and expression array analysis for identifying copy number responsive genes in areas of low DNA copy gain in cancer cells. ^
Resumo:
Microarray technology is a high-throughput method for genotyping and gene expression profiling. Limited sensitivity and specificity are one of the essential problems for this technology. Most of existing methods of microarray data analysis have an apparent limitation for they merely deal with the numerical part of microarray data and have made little use of gene sequence information. Because it's the gene sequences that precisely define the physical objects being measured by a microarray, it is natural to make the gene sequences an essential part of the data analysis. This dissertation focused on the development of free energy models to integrate sequence information in microarray data analysis. The models were used to characterize the mechanism of hybridization on microarrays and enhance sensitivity and specificity of microarray measurements. ^ Cross-hybridization is a major obstacle factor for the sensitivity and specificity of microarray measurements. In this dissertation, we evaluated the scope of cross-hybridization problem on short-oligo microarrays. The results showed that cross hybridization on arrays is mostly caused by oligo fragments with a run of 10 to 16 nucleotides complementary to the probes. Furthermore, a free-energy based model was proposed to quantify the amount of cross-hybridization signal on each probe. This model treats cross-hybridization as an integral effect of the interactions between a probe and various off-target oligo fragments. Using public spike-in datasets, the model showed high accuracy in predicting the cross-hybridization signals on those probes whose intended targets are absent in the sample. ^ Several prospective models were proposed to improve Positional Dependent Nearest-Neighbor (PDNN) model for better quantification of gene expression and cross-hybridization. ^ The problem addressed in this dissertation is fundamental to the microarray technology. We expect that this study will help us to understand the detailed mechanism that determines sensitivity and specificity on the microarrays. Consequently, this research will have a wide impact on how microarrays are designed and how the data are interpreted. ^
Resumo:
Chromatin, composed of repeating nucleosome units, is the genetic polymer of life. To aid in DNA compaction and organized storage, the double helix wraps around a core complex of histone proteins to form the nucleosome, and is therefore no longer freely accessible to cellular proteins for the processes of transcription, replication and DNA repair. Over the course of evolution, DNA-based applications have developed routes to access DNA bound up in chromatin, and further, have actually utilized the chromatin structure to create another level of complexity and information storage. The histone molecules that DNA surrounds have free-floating tails that extend out of the nucleosome. These tails are post-translationally modified to create docking sites for the proteins involved in transcription, replication and repair, thus providing one prominent way that specific genomic sequences are accessed and manipulated. Adding another degree of information storage, histone tail-modifications paint the genome in precise manners to influence a state of transcriptional activity or repression, to generate euchromatin, containing gene-dense regions, or heterochromatin, containing repeat sequences and low-density gene regions. The work presented here is the study of histone tail modifications, how they are written and how they are read, divided into two projects. Both begin with protein microarray experiments where we discover the protein domains that can bind modified histone tails, and how multiple tail modifications can influence this binding. Project one then looks deeper into the enzymes that lay down the tail modifications. Specifically, we studied histone-tail arginine methylation by PRMT6. We found that methylation of a specific histone residue by PRMT6, arginine 2 of H3, can antagonize the binding of protein domains to the H3 tail and therefore affect transcription of genes regulated by the H3-tail binding proteins. Project two focuses on a protein we identified to bind modified histone tails, PHF20, and was an endeavor to discover the biological role of this protein. Thus, in total, we are looking at a complete process: (1) histone tail modification by an enzyme (here, PRMT6), (2) how this and other modifications are bound by conserved protein domains, and (3) by using PHF20 as an example, the functional outcome of binding through investigating the biological role of a chromatin reader. ^
Resumo:
The difficulty of detecting differential gene expression in microarray data has existed for many years. Several correction procedures try to avoid the family-wise error rate in multiple comparison process, including the Bonferroni and Sidak single-step p-value adjustments, Holm's step-down correction method, and Benjamini and Hochberg's false discovery rate (FDR) correction procedure. Each multiple comparison technique has its advantages and weaknesses. We studied each multiple comparison method through numerical studies (simulations) and applied the methods to the real exploratory DNA microarray data, which detect of molecular signatures in papillary thyroid cancer (PTC) patients. According to our results of simulation studies, Benjamini and Hochberg step-up FDR controlling procedure is the best process among these multiple comparison methods and we discovered 1277 potential biomarkers among 54675 probe sets after applying the Benjamini and Hochberg's method to PTC microarray data.^
Resumo:
Most studies of differential gene-expressions have been conducted between two given conditions. The two-condition experimental (TCE) approach is simple in that all genes detected display a common differential expression pattern responsive to a common two-condition difference. Therefore, the genes that are differentially expressed under the other conditions other than the given two conditions are undetectable with the TCE approach. In order to address the problem, we propose a new approach called multiple-condition experiment (MCE) without replication and develop corresponding statistical methods including inference of pairs of conditions for genes, new t-statistics, and a generalized multiple-testing method for any multiple-testing procedure via a control parameter C. We applied these statistical methods to analyze our real MCE data from breast cancer cell lines and found that 85 percent of gene-expression variations were caused by genotypic effects and genotype-ANAX1 overexpression interactions, which agrees well with our expected results. We also applied our methods to the adenoma dataset of Notterman et al. and identified 93 differentially expressed genes that could not be found in TCE. The MCE approach is a conceptual breakthrough in many aspects: (a) many conditions of interests can be conducted simultaneously; (b) study of association between differential expressions of genes and conditions becomes easy; (c) it can provide more precise information for molecular classification and diagnosis of tumors; (d) it can save lot of experimental resources and time for investigators.^
Resumo:
The Microarray technique is rather powerful, as it allows to test up thousands of genes at a time, but this produces an overwhelming set of data files containing huge amounts of data, which is quite difficult to pre-process, separate, classify and correlate for interesting conclusions to be extracted. Modern machine learning, data mining and clustering techniques based on information theory, are needed to read and interpret the information contents buried in those large data sets. Independent Component Analysis method can be used to correct the data affected by corruption processes or to filter the uncorrectable one and then clustering methods can group similar genes or classify samples. In this paper a hybrid approach is used to obtain a two way unsupervised clustering for a corrected microarray data.
Resumo:
—Microarray-based global gene expression profiling, with the use of sophisticated statistical algorithms is providing new insights into the pathogenesis of autoimmune diseases. We have applied a novel statistical technique for gene selection based on machine learning approaches to analyze microarray expression data gathered from patients with systemic lupus erythematosus (SLE) and primary antiphospholipid syndrome (PAPS), two autoimmune diseases of unknown genetic origin that share many common features. The methodology included a combination of three data discretization policies, a consensus gene selection method, and a multivariate correlation measurement. A set of 150 genes was found to discriminate SLE and PAPS patients from healthy individuals. Statistical validations demonstrate the relevance of this gene set from an univariate and multivariate perspective. Moreover, functional characterization of these genes identified an interferon-regulated gene signature, consistent with previous reports. It also revealed the existence of other regulatory pathways, including those regulated by PTEN, TNF, and BCL-2, which are altered in SLE and PAPS. Remarkably, a significant number of these genes carry E2F binding motifs in their promoters, projecting a role for E2F in the regulation of autoimmunity.
Resumo:
The study of cross-reactivity in allergy is key to both understanding. the allergic response of many patients and providing them with a rational treatment In the present study, protein microarrays and a co-sensitization graph approach were used in conjunction with an allergen microarray immunoassay. This enabled us to include a wide number of proteins and a large number of patients, and to study sensitization profiles among members of the LTP family. Fourteen LTPs from the most frequent plant food-induced allergies in the geographical area studied were printed into a microarray specifically designed for this research. 212 patients with fruit allergy and 117 food-tolerant pollen allergic subjects were recruited from seven regions of Spain with different pollen profiles, and their sera were tested with allergen microarray. This approach has proven itself to be a good tool to study cross-reactivity between members of LTP family, and could become a useful strategy to analyze other families of allergens.
Resumo:
Cross-reactivity of plant foods is an important phenomenon in allergy, with geographical variations with respect to the number and prevalence of the allergens involved in this process, whose complexity requires detailed studies. We have addressed the role of thaumatin-like proteins (TLPs) in cross-reactivity between fruit and pollen allergies. A representative panel of 16 purified TLPs was printed onto an allergen microarray. The proteins selected belonged to the sources most frequently associated with peach allergy in representative regions of Spain. Sera from two groups of well characterized patients, one with allergy to Rosaceae fruit (FAG) and another against pollens but tolerant to food-plant allergens (PAG), were obtained from seven geographical areas with different environmental pollen profiles. Cross-reactivity between members of this family was demonstrated by inhibition assays. Only 6 out of 16 purified TLPs showed noticeable allergenic activity in the studied populations. Pru p 2.0201, the peach TLP (41%), chestnut TLP (24%) and plane pollen TLP (22%) proved to be allergens of probable relevance to fruit allergy, being mainly associated with pollen sensitization, and strongly linked to specific geographical areas such as Barcelona, Bilbao, the Canary Islands and Madrid. The patients exhibited mayor que50% positive response to Pru p 2.0201 and to chestnut TLP in these specific areas. Therefore, their recognition patterns were associated with the geographical area, suggesting a role for pollen in the sensitization of these allergens. Finally, the co-sensitizations of patients considering pairs of TLP allergens were analyzed by using the co-sensitization graph associated with an allergen microarray immunoassay. Our data indicate that TLPs are significant allergens in plant food allergy and should be considered when diagnosing and treating pollen-food allergy.
Resumo:
Background: Component-based diagnosis on multiplex platforms is widely used in food allergy but its clinical performance has not been evaluated in nut allergy. Objective: To assess the diagnostic performance of a commercial protein microarray in the determination of specific IgE (sIgE) in peanut, hazelnut, and walnut allergy. Methods: sIgE was measured in 36 peanut-allergic, 36 hazelnut-allergic, and 44 walnut-allergic patients by ISAC 112, and subsequently, sIgE against available components was determined by ImmunoCAP in patients with negative ISAC results. ImmunoCAP was also used to measure sIgE to Ara h 9, Cor a 8, and Jug r 3 in a subgroup of lipid transfer protein (LTP)-sensitized nut-allergic patients (positive skin prick test to LTP-enriched extract). sIgE levels by ImmunoCAP were compared with ISAC ranges. Results: Most peanut-, hazelnut-, and walnut-allergic patients were sensitized to the corresponding nut LTP (Ara h 9, 66.7%; Cor a 8, 80.5%; Jug r 3, 84% respectively). However, ISAC did not detect sIgE in 33.3% of peanut-allergic patients, 13.9% of hazelnut-allergic patients, or 13.6% of walnut-allergic patients. sIgE determination by ImmunoCAP detected sensitization to Ara h 9, Cor a 8, and Jug r 3 in, respectively, 61.5% of peanut-allergic patients, 60% of hazelnut-allergic patients, and 88.3% of walnut-allergic patients with negative ISAC results. In the subgroup of peach LTP?sensitized patients, Ara h 9 sIgE was detected in more cases by ImmunoCAP than by ISAC (94.4% vs 72.2%, P<.05). Similar rates of Cor a 8 and Jug r 3 sensitization were detected by both techniques. Conclusions: The diagnostic performance of ISAC was adequate for hazelnut and walnut allergy but not for peanut allergy. sIgE sensitivity against Ara h 9 in ISAC needs to be improved.
Resumo:
Tuberculosis is a chronic infectious disease that is transmitted by cough-propelled droplets that carry the etiologic bacterium, Mycobacterium tuberculosis. Although currently available drugs kill most isolates of M. tuberculosis, strains resistant to each of these have emerged, and multiply resistant strains are increasingly widespread. The growing problem of drug resistance combined with a global incidence of seven million new cases per year underscore the urgent need for new antituberculosis therapies. The recent publication of the complete sequence of the M. tuberculosis genome has made possible, for the first time, a comprehensive genomic approach to the biology of this organism and to the drug discovery process. We used a DNA microarray containing 97% of the ORFs predicted from this sequence to monitor changes in M. tuberculosis gene expression in response to the antituberculous drug isoniazid. Here we show that isoniazid induced several genes that encode proteins physiologically relevant to the drug’s mode of action, including an operonic cluster of five genes encoding type II fatty acid synthase enzymes and fbpC, which encodes trehalose dimycolyl transferase. Other genes, not apparently within directly affected biosynthetic pathways, also were induced. These genes, efpA, fadE23, fadE24, and ahpC, likely mediate processes that are linked to the toxic consequences of the drug. Insights gained from this approach may define new drug targets and suggest new methods for identifying compounds that inhibit those targets.
Resumo:
Although most eukaryotic mRNAs need a functional cap binding complex eIF4F for efficient 5′ end- dependent scanning to initiate translation, picornaviral, hepatitis C viral, and a few cellular RNAs have been shown to be translated by internal ribosome entry, a mechanism that can operate in the presence of low levels of functional eIF4F. To identify cellular mRNAs that can be translated when eIF4F is depleted or in low abundance and that, therefore, may contain internal ribosome entry sites, mRNAs that remained associated with polysomes were isolated from human cells after infection with poliovirus and were identified by using a cDNA microarray. Approximately 200 of the 7000 mRNAs analyzed remained associated with polysomes under these conditions. Among the gene products encoded by these polysome-associated mRNAs were immediate-early transcription factors, kinases, and phosphatases of the mitogen-activated protein kinase pathways and several protooncogenes, including c-myc and Pim-1. In addition, the mRNA encoding Cyr61, a secreted factor that can promote angiogenesis and tumor growth, was selectively mobilized into polysomes when eIF4F concentrations were reduced, although its overall abundance changed only slightly. Subsequent tests confirmed the presence of internal ribosome entry sites in the 5′ noncoding regions of both Cyr61 and Pim-1 mRNAs. Overall, this study suggests that diverse mRNAs whose gene products have been implicated in a variety of stress responses, including inflammation, angiogenesis, and the response to serum, can use translational initiation mechanisms that require little or no intact cap binding protein complex eIF4F.
Resumo:
We sought to create a comprehensive catalog of yeast genes whose transcript levels vary periodically within the cell cycle. To this end, we used DNA microarrays and samples from yeast cultures synchronized by three independent methods: α factor arrest, elutriation, and arrest of a cdc15 temperature-sensitive mutant. Using periodicity and correlation algorithms, we identified 800 genes that meet an objective minimum criterion for cell cycle regulation. In separate experiments, designed to examine the effects of inducing either the G1 cyclin Cln3p or the B-type cyclin Clb2p, we found that the mRNA levels of more than half of these 800 genes respond to one or both of these cyclins. Furthermore, we analyzed our set of cell cycle–regulated genes for known and new promoter elements and show that several known elements (or variations thereof) contain information predictive of cell cycle regulation. A full description and complete data sets are available at http://cellcycle-www.stanford.edu