874 resultados para Machine translating.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: The purpose of this study was to adapt and improve a minimally invasive two-step postmortem angiographic technique for use on human cadavers. Detailed mapping of the entire vascular system is almost impossible with conventional autopsy tools. The technique described should be valuable in the diagnosis of vascular abnormalities. MATERIALS AND METHODS: Postmortem perfusion with an oily liquid is established with a circulation machine. An oily contrast agent is introduced as a bolus injection, and radiographic imaging is performed. In this pilot study, the upper or lower extremities of four human cadavers were perfused. In two cases, the vascular system of a lower extremity was visualized with anterograde perfusion of the arteries. In the other two cases, in which the suspected cause of death was drug intoxication, the veins of an upper extremity were visualized with retrograde perfusion of the venous system. RESULTS: In each case, the vascular system was visualized up to the level of the small supplying and draining vessels. In three of the four cases, vascular abnormalities were found. In one instance, a venous injection mark engendered by the self-administration of drugs was rendered visible by exudation of the contrast agent. In the other two cases, occlusion of the arteries and veins was apparent. CONCLUSION: The method described is readily applicable to human cadavers. After establishment of postmortem perfusion with paraffin oil and injection of the oily contrast agent, the vascular system can be investigated in detail and vascular abnormalities rendered visible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé Cette thèse est consacrée à l'analyse, la modélisation et la visualisation de données environnementales à référence spatiale à l'aide d'algorithmes d'apprentissage automatique (Machine Learning). L'apprentissage automatique peut être considéré au sens large comme une sous-catégorie de l'intelligence artificielle qui concerne particulièrement le développement de techniques et d'algorithmes permettant à une machine d'apprendre à partir de données. Dans cette thèse, les algorithmes d'apprentissage automatique sont adaptés pour être appliqués à des données environnementales et à la prédiction spatiale. Pourquoi l'apprentissage automatique ? Parce que la majorité des algorithmes d'apprentissage automatiques sont universels, adaptatifs, non-linéaires, robustes et efficaces pour la modélisation. Ils peuvent résoudre des problèmes de classification, de régression et de modélisation de densité de probabilités dans des espaces à haute dimension, composés de variables informatives spatialisées (« géo-features ») en plus des coordonnées géographiques. De plus, ils sont idéaux pour être implémentés en tant qu'outils d'aide à la décision pour des questions environnementales allant de la reconnaissance de pattern à la modélisation et la prédiction en passant par la cartographie automatique. Leur efficacité est comparable au modèles géostatistiques dans l'espace des coordonnées géographiques, mais ils sont indispensables pour des données à hautes dimensions incluant des géo-features. Les algorithmes d'apprentissage automatique les plus importants et les plus populaires sont présentés théoriquement et implémentés sous forme de logiciels pour les sciences environnementales. Les principaux algorithmes décrits sont le Perceptron multicouches (MultiLayer Perceptron, MLP) - l'algorithme le plus connu dans l'intelligence artificielle, le réseau de neurones de régression généralisée (General Regression Neural Networks, GRNN), le réseau de neurones probabiliste (Probabilistic Neural Networks, PNN), les cartes auto-organisées (SelfOrganized Maps, SOM), les modèles à mixture Gaussiennes (Gaussian Mixture Models, GMM), les réseaux à fonctions de base radiales (Radial Basis Functions Networks, RBF) et les réseaux à mixture de densité (Mixture Density Networks, MDN). Cette gamme d'algorithmes permet de couvrir des tâches variées telle que la classification, la régression ou l'estimation de densité de probabilité. L'analyse exploratoire des données (Exploratory Data Analysis, EDA) est le premier pas de toute analyse de données. Dans cette thèse les concepts d'analyse exploratoire de données spatiales (Exploratory Spatial Data Analysis, ESDA) sont traités selon l'approche traditionnelle de la géostatistique avec la variographie expérimentale et selon les principes de l'apprentissage automatique. La variographie expérimentale, qui étudie les relations entre pairs de points, est un outil de base pour l'analyse géostatistique de corrélations spatiales anisotropiques qui permet de détecter la présence de patterns spatiaux descriptible par une statistique. L'approche de l'apprentissage automatique pour l'ESDA est présentée à travers l'application de la méthode des k plus proches voisins qui est très simple et possède d'excellentes qualités d'interprétation et de visualisation. Une part importante de la thèse traite de sujets d'actualité comme la cartographie automatique de données spatiales. Le réseau de neurones de régression généralisée est proposé pour résoudre cette tâche efficacement. Les performances du GRNN sont démontrées par des données de Comparaison d'Interpolation Spatiale (SIC) de 2004 pour lesquelles le GRNN bat significativement toutes les autres méthodes, particulièrement lors de situations d'urgence. La thèse est composée de quatre chapitres : théorie, applications, outils logiciels et des exemples guidés. Une partie importante du travail consiste en une collection de logiciels : Machine Learning Office. Cette collection de logiciels a été développée durant les 15 dernières années et a été utilisée pour l'enseignement de nombreux cours, dont des workshops internationaux en Chine, France, Italie, Irlande et Suisse ainsi que dans des projets de recherche fondamentaux et appliqués. Les cas d'études considérés couvrent un vaste spectre de problèmes géoenvironnementaux réels à basse et haute dimensionnalité, tels que la pollution de l'air, du sol et de l'eau par des produits radioactifs et des métaux lourds, la classification de types de sols et d'unités hydrogéologiques, la cartographie des incertitudes pour l'aide à la décision et l'estimation de risques naturels (glissements de terrain, avalanches). Des outils complémentaires pour l'analyse exploratoire des données et la visualisation ont également été développés en prenant soin de créer une interface conviviale et facile à l'utilisation. Machine Learning for geospatial data: algorithms, software tools and case studies Abstract The thesis is devoted to the analysis, modeling and visualisation of spatial environmental data using machine learning algorithms. In a broad sense machine learning can be considered as a subfield of artificial intelligence. It mainly concerns with the development of techniques and algorithms that allow computers to learn from data. In this thesis machine learning algorithms are adapted to learn from spatial environmental data and to make spatial predictions. Why machine learning? In few words most of machine learning algorithms are universal, adaptive, nonlinear, robust and efficient modeling tools. They can find solutions for the classification, regression, and probability density modeling problems in high-dimensional geo-feature spaces, composed of geographical space and additional relevant spatially referenced features. They are well-suited to be implemented as predictive engines in decision support systems, for the purposes of environmental data mining including pattern recognition, modeling and predictions as well as automatic data mapping. They have competitive efficiency to the geostatistical models in low dimensional geographical spaces but are indispensable in high-dimensional geo-feature spaces. The most important and popular machine learning algorithms and models interesting for geo- and environmental sciences are presented in details: from theoretical description of the concepts to the software implementation. The main algorithms and models considered are the following: multi-layer perceptron (a workhorse of machine learning), general regression neural networks, probabilistic neural networks, self-organising (Kohonen) maps, Gaussian mixture models, radial basis functions networks, mixture density networks. This set of models covers machine learning tasks such as classification, regression, and density estimation. Exploratory data analysis (EDA) is initial and very important part of data analysis. In this thesis the concepts of exploratory spatial data analysis (ESDA) is considered using both traditional geostatistical approach such as_experimental variography and machine learning. Experimental variography is a basic tool for geostatistical analysis of anisotropic spatial correlations which helps to understand the presence of spatial patterns, at least described by two-point statistics. A machine learning approach for ESDA is presented by applying the k-nearest neighbors (k-NN) method which is simple and has very good interpretation and visualization properties. Important part of the thesis deals with a hot topic of nowadays, namely, an automatic mapping of geospatial data. General regression neural networks (GRNN) is proposed as efficient model to solve this task. Performance of the GRNN model is demonstrated on Spatial Interpolation Comparison (SIC) 2004 data where GRNN model significantly outperformed all other approaches, especially in case of emergency conditions. The thesis consists of four chapters and has the following structure: theory, applications, software tools, and how-to-do-it examples. An important part of the work is a collection of software tools - Machine Learning Office. Machine Learning Office tools were developed during last 15 years and was used both for many teaching courses, including international workshops in China, France, Italy, Ireland, Switzerland and for realizing fundamental and applied research projects. Case studies considered cover wide spectrum of the real-life low and high-dimensional geo- and environmental problems, such as air, soil and water pollution by radionuclides and heavy metals, soil types and hydro-geological units classification, decision-oriented mapping with uncertainties, natural hazards (landslides, avalanches) assessments and susceptibility mapping. Complementary tools useful for the exploratory data analysis and visualisation were developed as well. The software is user friendly and easy to use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research aimed to evaluate machine traffic effect on soil compaction and the least limiting water range related to soybean cultivar yields, during two years, in a Haplustox soil. The six treatments were related to tractor (11 Mg weight) passes by the same place: T0, no compaction; and T1*, 1; T1, 1; T2, 2; T4, 4 and T6, 6. In the treatment T1*, the compaction occurred when soil was dried, in 2003/2004, and with a 4 Mg tractor in 2004/2005. Soybean yield was evaluated in relation to soil compaction during two agricultural years in completely randomized design (compaction levels); however, in the second year, there was a factorial scheme (compaction levels, with and without irrigation), with four replicates represented by 9 m² plots. In the first year, soybean [Glycine max (L.) Merr.] cultivar IAC Foscarim 31 was cultivated without irrigation; and in the second year, IAC Foscarim 31 and MG/BR 46 (Conquista) cultivars were cultivated with and without irrigation. Machine traffic causes compaction and reduces soybean yield for soil penetration resistance between 1.64 to 2.35 MPa, and bulk density between 1.50 to 1.53 Mg m-3. Soil bulk density from which soybean cultivar yields decrease is lower than the critical one reached at least limiting water range (LLWR =/ 0).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a two-level model of concurrent communicating systems (CCS) to serve as a basis formachine consciousness. A language implementing threads within logic programming is ¯rstintroduced. This high-level framework allows for the de¯nition of abstract processes that can beexecuted on a virtual machine. We then look for a possible grounding of these processes into thebrain. Towards this end, we map abstract de¯nitions (including logical expressions representingcompiled knowledge) into a variant of the pi-calculus. We illustrate this approach through aseries of examples extending from a purely reactive behavior to patterns of consciousness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper presents some contemporary approaches to spatial environmental data analysis. The main topics are concentrated on the decision-oriented problems of environmental spatial data mining and modeling: valorization and representativity of data with the help of exploratory data analysis, spatial predictions, probabilistic and risk mapping, development and application of conditional stochastic simulation models. The innovative part of the paper presents integrated/hybrid model-machine learning (ML) residuals sequential simulations-MLRSS. The models are based on multilayer perceptron and support vector regression ML algorithms used for modeling long-range spatial trends and sequential simulations of the residuals. NIL algorithms deliver non-linear solution for the spatial non-stationary problems, which are difficult for geostatistical approach. Geostatistical tools (variography) are used to characterize performance of ML algorithms, by analyzing quality and quantity of the spatially structured information extracted from data with ML algorithms. Sequential simulations provide efficient assessment of uncertainty and spatial variability. Case study from the Chernobyl fallouts illustrates the performance of the proposed model. It is shown that probability mapping, provided by the combination of ML data driven and geostatistical model based approaches, can be efficiently used in decision-making process. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report details the port interconnection of two subsystems: a power electronics subsystem (a back-to-back AC/AC converter (B2B), coupled to a phase of the power grid), and an electromechanical subsystem (a doubly-fed induction machine (DFIM), coupled mechanically to a flywheel and electrically to the power grid and to a local varying load). Both subsystems have been essentially described in previous reports (deliverables D 0.5 and D 4.3.1), although some previously unpublished details are presented here. The B2B is a variable structure system (VSS), due to the presence of control-actuated switches: however from a modelling and simulation, as well as a control-design, point of view, it is sensible to consider modulated transformers (MTF in the bond-graph language) instead of the pairs of complementary switches. The port-Hamiltonian models of both subsystems are presents and coupled through a power-preserving interconnection, and the Hamiltonian description of the whole system is obtained; detailed bond-graphs of all the subsystems and the complete system are provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the port interconnection of two subsystems: a power electronics subsystem (a back-to-back AC/CA converter (B2B), coupled to a phase of the power grid), and an electromechanical subsystem (a doubly-fed induction machine (DFIM). The B2B is a variable structure system (VSS), due to presence of control-actuated switches: however, from a modelling simulation, as well as a control-design, point of view, it is sensible to consider modulated transformers (MTF in the bond graph language) instead of the pairs of complementary switches. The port-Hamiltonian models of both subsystems are presented and, using a power-preserving interconnection, the Hamiltonian description of the whole system is obtained; detailed bond graphs of all subsystems and the complete system are also provided. Using passivity-based controllers computed in the Hamiltonian formalism for both subsystems, the whole model is simulated; simulations are run to rest the correctness and efficiency of the Hamiltonian network modelling approach used in this work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rotational speed of high-speed electric machines is over 15 000 rpm. These machines are compact in size when compared to the power rate. As a consequence, the heat fluxes are at a high level and the adequacy of cooling becomes an important design criterion. In the high-speed machines, the air gap between the stator and rotor is a narrow flow channel. The cooling air is produced with a fan and the flow is then directed to the air gap. The flow in the gap does not provide sufficient cooling for the stator end windings, and therefore additional cooling is required. This study investigates the heat transfer and flow fields around the coil end windings when cooling jets are used. As a result, an innovative and new assembly is introduced for the cooling jets, with the benefits of a reduced amount of hot spots, a lower pressure drop, and hence a lower power need for the cooling fan. The gained information can also be applied to improve the cooling of electric machines through geometry modifications. The objective of the research is to determine the locations of the hot spots and to find out induced pressure losses with different jet alternatives. Several possibilities to arrange the extra cooling are considered. In the suggested approach cooling is provided by using a row of air jets. The air jets have three main tasks: to cool the coils effectively by direct impingement jets, to increase and cool down the flow that enters the coil end space through the air gap, and to ensure the correct distribution of the flow by forming an air curtain with additional jets. One important aim of this study is the arrangement of cooling jets in such manner that hot spots can be avoided to wide extent. This enables higher power density in high-speed motors. This cooling system can also be applied to the ordinary electric machines when efficient cooling is needed. The numerical calculations have been performed using a commercial Computational Fluid Dynamics software. Two geometries have been generated: cylindrical for the studied machine and Cartesian for the experimental model. The main parameters include the positions, arrangements and number of jets, the jet diameters, and the jet velocities. The investigated cases have been tested with two widely used turbulence models and using a computational grid of over 500 000 cells. The experimental tests have been made by using a simplified model for the end winding space with cooling jets. In the experiments, an emphasis has been given to flow visualisation. The computational analysis shows good agreement with the experimental results. Modelling of the cooling jet arrangement enables also a better understanding of the complex system of heat transfer at end winding space.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The decision-making process regarding drug dose, regularly used in everyday medical practice, is critical to patients' health and recovery. It is a challenging process, especially for a drug with narrow therapeutic ranges, in which a medical doctor decides the quantity (dose amount) and frequency (dose interval) on the basis of a set of available patient features and doctor's clinical experience (a priori adaptation). Computer support in drug dose administration makes the prescription procedure faster, more accurate, objective, and less expensive, with a tendency to reduce the number of invasive procedures. This paper presents an advanced integrated Drug Administration Decision Support System (DADSS) to help clinicians/patients with the dose computing. Based on a support vector machine (SVM) algorithm, enhanced with the random sample consensus technique, this system is able to predict the drug concentration values and computes the ideal dose amount and dose interval for a new patient. With an extension to combine the SVM method and the explicit analytical model, the advanced integrated DADSS system is able to compute drug concentration-to-time curves for a patient under different conditions. A feedback loop is enabled to update the curve with a new measured concentration value to make it more personalized (a posteriori adaptation).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tämän diplomityön tarkoituksena on tutkia paperimassan jakautumiseen vaikuttavia tekijöitä paperinvalmistusprosessissa. Työn empiirisen osan tavoitteena on analysoida perälaatikon hienoainepitoisuuden ja paperimassan virtausnopeuden vaikutusta paperimassan jakautumiseen pilottipaperikoneessa, sekä selvittää voidaanko näitä prosessiparametreja optimoimalla saavuttaa merkittävää retention, vedenpoiston ja kaksipuolisuuden parantumista. Työn teoreettinen osa sisältää kirjallisuuskatsauksen märänpään kemiasta ja yhteenvedon aikaisemmasta tutkimuksesta koskien paperimassan jakautumista paperinvalmistusprosessissa. Työn empiirisessä osassa on tutkittu perälaatikon hienoainepitoisuuden ja paperimassan virtausnopeuden vaikutusta retentioon, vedenpoistoon ja paperimassan jakautumiseen Papricanin pilottipaperikoneessa. Analyysissä on käytetty yhteensovitettua dataa, joka on saatu kattavien pilottipaperikonekokeiden ja taulukkolaskentaohjelmalla toteutettujen staattisten simulointimallien avulla. Simulointimalleissa perälaatikon hienoainepitoisuus on 30-55%, sekä paperimassan virtausnopeudet ovat 2470 L/min, 3870 L/min ja 5230 L/min. Muut prosessiparametrit on vakioitu, eikä retentioainetta käytetty. Retentio pilottipaperikoneessa oli 55-82% riippuen perälaatikon hienoainepitoisuudesta ja paperimassan virtausnopeudesta. Perälaatikon hienoainepitoisuuden ja retention välillä oli voimakas negatiivinen korrelaatio. Myös paperimassan virtausnopeuden ja retention välillä oli negatiivinen korrelaatio. Mitä alhaisempi retentio, sitä enemmän hienoainesta kerääntyi systeemiin. Hienoaineen huuhtoutuminen paperirainasta korreloi vedenpoistoon: pienemmällä paperimassan virtausnopeudella enemmän sekä vettä että hienoainetta poistui viirapuolelta, ja suuremmalla paperimassan virtausnopeudella saman verran sekä vettä että hienoainetta poistui rainan molemmilta puolilta. Paras paperirainan kaksipuolisuus saavutettiin korkeilla perälaatikon hienoainepitoisuuksilla (50% ja 55%) suurilla paperimassan virtausnopeuksilla (3870 L/min ja 5230 L/min).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The warp of corrugated board is the most prevalent quality problem incorrugated board industry. Nowadays corrugators provide high quality board but there often occurs a warp problem within the production of some board grades. One of the main reasons for that are the humidity and the temperature levels of the raw materials. The goal of the research is to find out howthe adjusted corrugator recipe parameters required for appropriate running of the corrugated board are repeatable for the considered board grades, how the temperature and humidity imbalances of the raw material papers influence on the warpformation of the finished board. Furthermore, the solutions for preventing warpof corrugated board are presented in the thesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a study of correlations between the performance of trainee translators, according to their teacher’s assessment, and the quality of their self-evaluation, according to their answers to metacognitive questionnaires. Two case-studies of two consecutive editions of a course in general translation from German into Spanish are dealt with. The course involved the use of post-translation metacognitive questionnaires designed to help trainees to evaluate their translating. A selection of the questionnaires (from the strongest and the weakest performances by students for each course edition) is considered. The study focuses on one item in these questionnaires that has to do with identifying translation problems and justifying their solutions. An interpretive analysis of the trainees’ answers for this questionnaire item reveals that the best-performing students were more strategically and translationally aware in self-evaluating their own translating. Our conclusions are based on considering six parameters from the analysis of the trainees’ answers, which are tentatively regarded as indicative of the quality of their self-evaluation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work had two primary objectives: 1) to produce a working prototype for automated printability assessment and 2) to perform a study of available machine vision and other necessary hardware solutions. The three printability testing methods, IGT Picking,He¬liotest, and mottling, considered in this work have several different requirements and the task was to produce a single automated testing system suitable for all methods. A system was designed and built and its performance was tested using the Heliotest. Working proto¬types are important tools for implementing theoretical methods into practical systems and testing and demonstrating the methodsin real life conditions. The system was found to be sufficient for the Heliotest method. Further testing and possible modifications related to other two test methods were left for future works. A short study of available systems and solutions concerning image acquisition of machine vision was performed. The theoretical part of this study includes lighting systems, optical systems and image acquisition tools, mainly cameras and the underlying physical aspects for each portion.