932 resultados para MULTILOCUS ENZYME ELECTROPHORESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inorganic pyrophosphatases (PPases, EC 3.6.1.1) hydrolyse pyrophosphate in a reaction that provides the thermodynamic 'push' for many reactions in the cell, including DNA and protein synthesis. Soluble PPases can be classified into two families that differ completely in both sequence and structure. While Family I PPases are found in all kingdoms, family II PPases occur only in certain prokaryotes. The enzyme from baker's yeast (Saccharomyces cerevisiae) is very well characterised both kinetically and structurally, but the exact mechanism has remained elusive. The enzyme uses divalent cations as cofactors; in vivo the metal is magnesium. Two metals are permanently bound to the enzyme, while two come with the substrate. The reaction cycle involves the activation of the nucleophilic oxygen and allows different pathways for product release. In this thesis I have solved the crystal structures of wild type yeast PPase and seven active site variants in the presence of the native cofactor magnesium. These structures explain the effects of the mutations and have allowed me to describe each intermediate along the catalytic pathway with a structure. Although establishing the ʻchoreographyʼ of the heavy atoms is an important step in understanding the mechanism, hydrogen atoms are crucial for the mechanism. The most unambiguous method to determine the positions of these hydrogen atoms is neutron crystallography. In order to determine the neutron structure of yeast PPase I perdeuterated the enzyme and grew large crystals of it. Since the crystals were not stable at ambient temperature, a cooling device was developed to allow neutron data collection. In order to investigate the structural changes during the reaction in real time by time-resolved crystallography a photolysable substrate precursor is needed. I synthesised a candidate molecule and characterised its photolysis kinetics, but unfortunately it is hydrolysed by both yeast and Thermotoga maritima PPases. The mechanism of Family II PPases is subtly different from Family I. The native metal cofactor is manganese instead of magnesium, but the metal activation is more complex because the metal ions that arrive with the substrate are magnesium different from those permanently bound to the enzyme. I determined the crystal structures of wild type Bacillus subtilis PPase with the inhibitor imidodiphosphate and an inactive H98Q variant with the substrate pyrophosphate. These structures revealed a new trimetal site that activates the nucleophile. I also determined that the metal ion sites were partially occupied by manganese and iron using anomalous X- ray scattering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mycobacterium tuberculosis H37Rv possesses an enzyme (referred to as ‘Y enzyme’) which catalyses in the presence of INH and NAD, the formation of a product, which turns yellow on acidification. The requirements for the reaction, such as enzyme concentration, INH concentration, etc., have been standardized. The substrate specificity of the enzyme with respect to INH and NAD has been determined. The reaction is specific for the INH-sensitive strain and is totally absent in INH-resistant strains. Furthermore, the ‘Y enzyme’ shows some characteristic features of a peroxidase in its requirement for oxygen and sensitivity to inhibition by various reagents. The requirements of this enzyme which is involved in the action of isoniazid inM. tuberculosis H37Rv is described for the first time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystalline mung bean nucleotide pyrophosphatase was inhibited nonlinearly by AMP, one of the products of the reaction. The partially inactive enzyme was specifically reactivated by ADP, and V at maximal activation was the same as that of the native enzyme. ATP was a linear, noncompetitive inhibitor. The kinetic evidence suggested that ADP and ATP might not be reacting at the same site as AMP. The electrophoretic mobility of the enzyme was increased by AMP, whereas ADP and ATP were without effect. The enzyme was denatured on treatment with urea or guanidine hydrochloride. The renatured and the native enzyme had the same pH (9.4) and temperature (49 °C) optimum. The Km (0.2 m ) and V (3.2) of the native enzyme increased on renaturation to 1.8 m and 8.0, respectively. In addition, renaturation resulted in desensitization of the enzyme to inhibition by low concentrations of AMP. Renaturation did not affect the reactivation of the apoenzyme by Zn2+.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of a simple method of coating a semi-permanent phospholipid layer onto a capillary for electrochromatography use was the focus of this study. The work involved finding good coating conditions, stabilizing the phospholipid coating, and examining the effect of adding divalent cations, cetyltrimethylammonium bromide, and polyethylene glycol (PEG)-lipids on the stability of the coating. Since a further purpose was to move toward more biological membrane coatings, the capillaries were also coated with cholesterol-containing liposomes and liposomes of red blood cell ghost lipids. Liposomes were prepared by extrusion, and large unilamellar vesicles with a diameter of about 100 nm were obtained. Zwitterionic phosphatidylcholine (PC) was used as a basic component, mainly 1-palmitoyl-2-oleyl-sn-glycero-3-phosphocholine (POPC) but also eggPC and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). Different amounts of sphingomyelin, bovine brain phosphatidylserine, and cholesterol were added to the PC. The stability of the coating in 40 mM N-(2-hydroxyethyl)piperazine-N’-(2-ethanesulfonic acid) (HEPES) solution at pH 7.4 was studied by measuring the electroosmotic flow and by separating neutral steroids, basic proteins, and low-molar-mass drugs. The presence of PC in the coating solution was found to be essential to achieving a coating. The stability of the coating was improved by the addition of negative phosphatidylserine, cholesterol, divalent cations, or PEGylated lipids, and by working in the gel-state region of the phospholipid. Study of the effect on the PC coating of divalent metal ions calcium, magnesium, and zinc showed a molar ratio of 1:3 PC/Ca2+ or PC/Mg2+ to give increased rigidity to the membrane and the best coating stability. The PEGylated lipids used in the study were sterically stabilized commercial lipids with covalently attached PEG chains. The vesicle size generally decreased when PEGylated lipids of higher molar mass were present in the vesicle. The predominance of discoidal micelles over liposomes increased PEG chain length and the average size of the vesicles thus decreased. In the capillary electrophoresis (CE) measurements a highly stable electroosmotic flow was achieved with 20% PEGylated lipid in the POPC coating dispersion, the best results being obtained for disteroyl PEG (3000) conjugates. The results suggest that smaller particles (discoidal micelles) result in tighter packing and better shielding of silanol groups on the silica wall. The effect of temperature on the coating stability was investigated by using DPPC liposomes at temperatures above (45 C) and below (25 C) the main phase transition temperature. Better results were obtained with DPPC in the more rigid gel state than in the fluid state: the electroosmotic flow was heavily suppressed and the PC coating was stabilized. Also dispersions of DPPC with 0−30 mol% of cholesterol and sphingomyelin in different ratios, which more closely resemble natural membranes, resulted in stable coatings. Finally, the CE measurements revealed that a stable coating is formed when capillaries are coated with liposomes of red blood cell ghost lipids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When immobilized enzyme kinetics are disguised by inter- and intraparticle diffusion effects, an approximate mathematical procedure is indicated whereby experimental data obtained in the limiting ranges of first- and zeroth-order Michaelis-Menten kinetics could be used for the prediction of the kinetic constants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

5,10-Methylenetetrahydrofolate reductase (EC 1.1.1.68) was purified from the cytosolic fraction of sheep liver by (NH4)2 SO4 fractionation, acid precipitation, DEAE-Sephacel chromatography and Blue Sepharose affinity chromatography. The homogeneity of the enzyme was established by sodium dodecyl sulphate-polyacrylamide gel electrophoresis, ultracentrifugation and Ouchterlony immunodiffusion test. The enzyme was a dimer of molecular weight 1,66,000 ± 5,000 with a subunit molecular weight of 87,000 ±5,000. The enzyme showed hyperbolic saturation pattern with 5-methyltetrahydrofolate.K 0.5 values for 5-methyltetrahydrofolate menadione and NADPH were determined to be 132 ΜM, 2.45 ΜM and 16 ΜM. The parallel set of lines in the Lineweaver-Burk plot, when either NADPH or menadione was varied at different fixed concentrations of the other substrate; non-competitive inhibition, when NADPH was varied at different fixed concentrations of NADP; competitive inhibition, when menadione was varied at different fixed concentrations of NADP and the absence of inhibition by NADP at saturating concentration of menadione, clearly established that the kinetic mechanism of the reaction catalyzed by this enzyme was ping-pong.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The specific activity of glutamine synthetase (L-glutamate: ammonia ligase, EC 6.3.1.2) in surface grown Aspergillus niger was increased 3-5 fold when grown on L-glutamate or potassium nitrate, compared to the activity obtained on ammonium chloride. The levels of glutamine synthetase was regulated by the availability of nitrogen source like NH4 + , and further, the enzyme is repressed by increasing concentrations of NH4 +. In contrast to other micro-organisms, the Aspergillus niger enzyme was neither specifically inactivated by NH4+ or L-glutamine nor regulated by covalent modification.Glutamine synthetase from Aspergillus niger was purified to homogenity. The native enzyme is octameric with a molecular weight of 385,000±25,000. The enzyme also catalyses Mn2+ or Mg2+-dependent synthetase and Mn2+-dependent transferase activity.Aspergillus niger glutamine synthetase was completely inactivated by two mol of phenylglyoxal and one mol of N-ethylmaleimide with second order rate constants of 3·8 M–1 min–1 and 760 M–1 min–1 respectively. Ligands like Mg. ATP, Mg. ADP, Mg. AMP, L-glutamate NH4+, Mn2+ protected the enzyme against inactivation. The pattern of inactivation and protection afforded by different ligands against N-ethylamaleimide and phenylglyoxal was remarkably similar. These results suggest that metal ATP complex acts as a substrate and interacts with an arginine ressidue at the active site. Further, the metal ion and the free nucleotide probably interact at other sites on the enzyme affecting the catalytic activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arginine decarboxylase which makes its appearance in Lathyrus sativus seedlings after 24 h of seed germination reaches its highest level around 5–7 days, the cotyledons containing about 60% of the total activity in the seedlings at day 5. The cytosol enzyme was purified 977-fold from whole seedlings by steps involving manganese chloride treatment, ammonium sulphate and acetone fractionations, positive adsorption on alumina C-γ gel, DEAE-Sephadex chromatography followed by preparative disc gel electrophoresis. The enzyme was shown to be homogeneous by electrophoretic and immunological criteria, had a molecular weight of 220000 and appears to be a hexamer with identical subunits. The optimal pH and temperature for the enzyme activity were 8.5 and 45 °C respectively. The enzyme follows typical Michaelis-Menten kinetics with a Km value of 1.73 mM for arginine. Though Mn2+ at lower concentrations stimulated the enzyme activity, there was no dependence of the enzyme on any metal for the activity. The arginine decarboxylase of L. sativus is a sulfhydryl enzyme. The data on co-factor requirement, inhibition by carbonyl reagents, reducing agents and pyridoxal phosphate inhibitors, and a partial reversal by pyridoxal phosphate of inhibition by pyridoxal · HCl suggests that pyridoxal 5'-phosphate is involved as a co-factor for the enzyme. The enzyme activity was inhibited competitively by various amines including the product agmatine. Highest inhibition was obtained with spermine and arcain. The substrate analogue, l-canavanine, homologue l-homoarginine and other basic amino acids like l-lysine and l-ornithine inhibited the enzyme activity competitively, homoarginine being the most effective in this respect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Benzoate-4-hydroxylase from a soil pseudomonad was isolated and purified about 50-fold. Polyacrylamide gel electrophoresis of this enzyme preparation showed one major band and one minor band. The approximate molecular weight of the enzyme was found to be 120,000. Benzoate-4-hydroxylase was most active around pH 7.2. The enzyme showed requirements for tetrahydropteridine as the cofactor and molecular oxygen as the electron acceptor. NADPH, NADH, dithiothreitol, β-mercaptoethanol, and ascorbic acid when added alone to the reaction mixture did not support the hydroxylation reaction to any significant extent. However, when these compounds were added together with tetrahydropteridine, they stimulated the hydroxylation. This stimulation is probably due to the reduction of the oxidized pteridine back to the reduced form. This enzyme was activated by Fe2+ and benzoate. It was observed that benzoate-4-hydroxylase could catalyze the oxidation of NADPH in the presence of benzoate,p-aminobenzoate, p-nitrobenzoate, p-chlorobenzoate, and p-methylbenzoate, with only benzoate showing maximum hydroxylation. Inhibition studies with substrate analogs and their kinetic analysis revealed that the carboxyl group is involved in binding the substrate to the enzyme at the active center. The enzyme catalyzed the conversion of 1 mol of benzoate to 1 mol of p-hydroxybenzoate with the consumption of slightly more than 1 mol of NADPH and oxygen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phenylalanine ammonia-lyase (EC 4.3.1.5) was purified to homogeneity from the acetone-dried powders of the mycelial felts of the plant pathogenic fungus Rhizoctonia solani. 2. A useful modification in protamine sulphate treatment to get substantial purification of the enzyme in a single-step is described. 3. The purified enzyme shows bisubstrate activity towards L-phenylalanine and L-tyrosine. 4. It is sensitive to carbonyl reagents and the inhibition is not reversed by gel filtration. 5. The molecular weight of the enzyme as determined by Sephadex G-200 chromatography and sucrose-density-gradient centrifugation is around 330000. 6. The enzyme is made up of two pairs of unidentical subunits, with a molecular weight of 70000 (alpha) and 90000 (beta) respectively. 7. Studies on initial velocity versus substrate concentration have shown significant deviations from Michaelis-Menten kinetics. 8. The double-reciprocal plots are biphasic (concave downwards) and Hofstee plots show a curvilinear pattern. 9. The apparent Km value increases from 0.18 mM to as high as 5.0 mM with the increase in the concentration of the substrate and during this process the Vmax, increases by 2-2.5-fold. 10. The value of Hill coefficient is 0.5. 11. Steady-state rates of phenylalanine ammonia-lyase reaction in the presence of inhibitors like D-phenylalanine, cinnamic, p-coumaric, caffeic, dihydrocaffeic and phenylpyruvic acid have shown that only one molecule of each type of inhibitor binds to a molecule of the enzyme. These observations suggest the involvement of negative homotropic interactions in phenylalanine ammonia-lyase. 12. The enzyme could not be desensitized by treatment with HgCl2, p-chloromercuribenzoic acid or by repeated freezing and thawing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acetylcholinesterase (AChE) from Pisum sativum purified 28 fold showed two closely moving protein bands on polyacrylamide gel electrophoresis, both of which have AChE activity. AChE activity occurs in roots, stem and leaves, that in roots varying with age. Activity is optimal at pH 9 and at 30”. The energy of activation is 9.82 x lo3 J per mol and MW is greater than 200000. Although the enzyme can hydrolyze both choline and non-choline esters, it has greater affinity for acetylthiocholine (ATCh) and acetylcholine (ACh). ATCh inhibits the enzyme at higher concentrations and the K, is 0.2 mM with this as substrate. The enzyme is not as sensitive to Eserine as it is to Neostigmine. It is also inhibited by organophosphorus pesticides such as Fensulfothion, Parathion and Dimethoate. Treatment of the seeds with Fensulfothion [O, O-diethyl (p-methylsulfinylphenyl) phosphorothioate] affects growth and secondary root development. This might be explained by its inhibition of AChE and the consequent increase of endogenous levels of ACh.