987 resultados para MR imaging
Magnetic resonance imaging features of orbital inflammation with intracranial extension in four dogs
Resumo:
This retrospective study describes the clinical and magnetic resonance (MR) imaging features of chronic orbital inflammation with intracranial extension in four dogs (two Dachshunds, one Labrador, one Swiss Mountain). Intracranial extension was observed through the optic canal (n=1), the orbital fissure (n=4), and the alar canal (n=1). On T1-weighted images structures within the affected skull foramina could not be clearly differentiated, but were all collectively isointense to hypointense compared with the contralateral, unaffected side, or compared with gray matter. On T2-, short tau inversion recovery (STIR)-, or fluid-attenuated inversion recovery (FLAIR)-weighted images structures within the affected skull foramina appeared hyperintense compared with gray matter, and extended with increased signal into the rostral cranial fossa (n=1) and middle cranial fossa (n=4). Contrast enhancement at the level of the affected skul foramina as well as at the skull base in continuity with the orbital fissure was observed in all patients. Brain edema or definite meningeal enhancement could not be observed, but a close anatomic relationship of the abnormal tissue to the cavernous sinus was seen in two patients. Diagnosis was confirmed in three dogs (one cytology, two biopsy, one necropsy) and was presumptive in one based on clinical improvement after treatment. This study is limited by its small sample size, but provides evidence for a potential risk of intracranial extension of chronic orbital inflammation. This condition can be identified best by abnormal signal increase at the orbital fissure on transverse T2-weighted images, on dorsal STIR images, or on postcontrast transverse or dorsal images.
Resumo:
RATIONALE AND OBJECTIVES: A feasibility study on measuring kidney perfusion by a contrast-free magnetic resonance (MR) imaging technique is presented. MATERIALS AND METHODS: A flow-sensitive alternating inversion recovery (FAIR) prepared true fast imaging with steady-state precession (TrueFISP) arterial spin labeling sequence was used on a 3.0-T MR-scanner. The basis for quantification is a two-compartment exchange model proposed by Parkes that corrects for diverse assumptions in single-compartment standard models. RESULTS: Eleven healthy volunteers (mean age, 42.3 years; range 24-55) were examined. The calculated mean renal blood flow values for the exchange model (109 +/- 5 [medulla] and 245 +/- 11 [cortex] ml/min - 100 g) are in good agreement with the literature. Most important, the two-compartment exchange model exhibits a stabilizing effect on the evaluation of perfusion values if the finite permeability of the vessel wall and the venous outflow (fast solution) are considered: the values for the one-compartment standard model were 93 +/- 18 (medulla) and 208 +/- 37 (cortex) ml/min - 100 g. CONCLUSION: This improvement will increase the accuracy of contrast-free imaging of kidney perfusion in treatment renovascular disease.
Resumo:
Hereditary spastic paraplegia (HSP) associated with thin corpus callosum is a rare autosomal recessive neurodegenerative disorder characterized by an abnormally thin corpus callosum, normal motor development, slowly progressive spastic paraparesis and cognitive deterioration. To investigate and localize abnormalities in the brains of two Chinese patients with HSP-TCC, with mutations in the spatacsin gene. Diffusion tensor imaging (DTI) was used to determine the mean diffusion (MD) and fractional anisotropy (FA) in the brains of the patients in comparison to 20 healthy subjects. Voxel-based analysis (VBA) of both the diffusion and anisotropy values were performed using statistical parametric mapping (SPM). Significant changes with MD increase and FA reduction were found in the already known lesions including the corpus callosum, cerebellum and thalamus. In addition, changes were also found in regions that appear to be normal in conventional MRI, such as the brain stem, internal capsule, cingulum and subcortical white matter including superior longitudinal fascicle and inferior longitudinal fascicle. Neither increase in FA nor reduction in MD was detected in the brain. Our study provides clear in vivo MR imaging evidence of a more widespread brain involvement of HSP-TCC. MD is more sensitive than FA in detecting lesions in thalamus and subcortical white matter, suggesting that MD may be a better marker of the disease progression.
Resumo:
PURPOSE: To prospectively quantify in vitro the influence of gadopentetate dimeglumine and ioversol on the magnetic resonance (MR) imaging signal observed with a variety of musculoskeletal pulse sequences to predict optimum gadolinium concentrations for direct MR arthrography at 1.5 and 3.0 T. MATERIALS AND METHODS: In an in vitro study, T1 and T2 relaxation times of three dilution series of gadopentetate dimeglumine (concentration, 0-20.0 mmol gadolinium per liter) at ioversol concentrations with iodine concentration of 0, 236.4, and 1182 mmol iodine per liter (corresponding to 0, 30, and 150 mg of iodine per milliliter) were measured at 1.5 and 3.0 T. The relaxation rate dependence on concentrations of gadolinium and iodine was analytically modeled, and continuous profiles of signal versus gadolinium concentration were calculated for 10 pulse sequences used in current musculoskeletal imaging. After fitting to experimental discrete profiles, maximum signal-to-noise ratio (SNR), gadolinium concentration with maximum SNR, and range of gadolinium concentration with 90% of maximum SNR were derived. The overall influence of field strength and iodine concentration on these parameters was assessed by using t tests. The deviation of simulated from experimental signal-response profiles was assessed with the autocorrelation of the residuals. RESULTS: The model reproduced relaxation rates of 0.37-38.24 sec(-1), with a mean error of 4.5%. Calculated SNR profiles matched the discrete experimental profiles, with autocorrelation of the residuals divided by the mean of less than 5.0. Admixture of ioversol consistently reduced T1 and T2, narrowed optimum gadolinium concentration ranges (P = .004-.006), and reduced maximum SNR (P < .001 to not significant). Optimum gadolinium concentration was 0.7-3.4 mmol/L at both field strengths. At 3.0 T, maximum SNR was up to 75% higher than at 1.5 T. CONCLUSION: Admixture of ioversol to gadopentetate dimeglumine solutions results in a consistent additional relaxation enhancement, which can be analytically modeled to allow a near-quantitative a priori optimized match of contrast media concentrations and imaging protocol for a broad variety of pulse sequences.
Resumo:
OBJECTIVE: Initial presentation with primary spinal involvement in chronic recurrent multifocal osteomyelitis of childhood (CRMO) is rare. Our objective was to review the imaging appearances of three patients who had CRMO who initially presented with isolated primary spinal involvement. DESIGN AND PATIENTS: The imaging, clinical, laboratory and histology findings of the three patients were retrospectively reviewed. Imaging included seven spinal MR imaging scans, one computed tomography scan, nine bone scans, two tomograms and 16 radiographs. These were reviewed by two musculoskeletal radiologists and a consensus view is reported. All three patients presented with atraumatic spinal pain and had extensive bone spinal pathology. The patients were aged 11, 13 and 12 years. There were two females and one male. RESULTS AND CONCLUSIONS: The initial patient had thoracic T6 and T8 vertebra plana. Bone scan showed additional vertebral body involvement. Follow-up was available over a 3 year period. The second patient had partial collapse of T9 and, 2 years later, of C6. Subsequently extensive multifocal disease ensued and follow-up was available over 8 years. The third patient initially had L3 inferior partial collapse and 1 year later T8 involvement with multifocal disease. Follow-up was available over 3 years. The imaging findings of the three patients include partial and complete vertebra plana with a subchondral line adjacent to endplates associated with bone marrow MR signal alterations. Awareness of the imaging appearances may help the radiologist to include this entity in the differential diagnosis in children who present with spinal pathology and no history of trauma. Histopathological examination excludes tumor and infection but with typical imaging findings may not always be necessary.
Resumo:
The purpose of the present study was to describe normal magnetic resonance (MR) imaging anatomy of the equine larynx and pharynx and to present the optimal protocol, sequences, and possible limitations of this examination technique. Using a 0.3 T unit, the laryngeal and pharyngeal regions was imaged in two horses. The protocol consisted of sagittal and transverse T2-weighted (T2w) fast spin echo, transverse T1-weighted (T1w) spin echo, and dorsal high-resolution T1w gradient echo (both pre- and postcontrast enhancement) sequences. Euthanasia was performed at the end of the imaging procedure. Macroscopic anatomy of the cadaver sections were compared with the MR images in transverse, midsagittal, and parasagittal planes. There was good differentiation of anatomic structures, including soft tissues. The laryngeal cartilages, hyoid apparatus, and upper airway muscle groups with their attachments could be clearly identified. However, it was not always possible to delineate individual muscles in each plane. Most useful were both T2w and T1w transverse sequences. Intravenous application of contrast medium was helpful to identify blood vessels. The MR images corresponded with the macroscopic anatomy of cadaver sections.
Resumo:
A 7-year-old female spayed Scottish Terrier was presented with central nervous system symptoms suggestive of a lesion in the forebrain. Magnetic resonance (MR) imaging revealed multifocal disease in the forebrain. Because of complete lack of contrast enhancement, the changes were attributed to lesions of inflammatory origin.Histopathology of the brain revealed multiplemetastatic lesions of an adenocarcinoma. Brainmetastases in general show contrast enhancement. The reason for a complete absence of contrast enhancement is unknown. Previous administration of corticosteroids, increased diffusion time of contrast medium, increased intracranial pressure in combination with an intact blood–tumor barrier is discussed as possible reasons.
Resumo:
OBJECTIVE To investigate pathological findings in the susceptibility weighted imaging (SWI) of patients experiencing convulsive (CSE) or non-convulsive status epilepticus (NCSE) with focal hyperperfusion in the acute setting. METHODS Twelve patients (six with NCSE confirmed by electroencephalogram (EEG) and six patients with CSE with seizure event clinically diagnosed) underwent MRI in this acute setting (mean time between onset of symptoms and MRI was 3 h 8 min), including SWI, dynamic susceptibility contrast MR imaging (DSC) and diffusion-weighted imaging (DWI). MRI sequences were retrospectively evaluated and compared with EEG findings (10/12 patients), and clinical symptoms. RESULTS Twelve out of 12 (100 %) patients showed a focal parenchymal area with pseudo-narrowed cortical veins on SWI, associated with focal hyperperfused areas (increased cerebral blood flow (CBF) and mean transit time (MTT) shortening), and cortical DWI restriction in 6/12 patients (50 %). Additionally, these areas were associated with ictal or postical EEG patterns in 8/10 patients (80 %). Most frequent acute clinical findings were aphasia and/or hemiparesis in eight patients, and all of them showed pseudo-narrowed veins in those parenchymal areas responsible for these symptoms. CONCLUSION In this study series with CSE and NCSE patients, SWI showed focally pseudo-narrowed cortical veins in hyperperfused and ictal parenchymal areas. Therefore, SWI might have the potential to identify an ictal region in CSE/NCSE. KEY POINTS • The focal ictal brain regions show hyperperfusion in DSC MR-perfusion imaging. • SWI shows focally diminished cortical veins in hyperperfused ictal regions. • SWI has the potential to identify a focal ictal region in CSE/NCSE.
Resumo:
OBJECTIVE The objective of this study was to assess the discriminative power of dual-energy computed tomography (DECT) versus single-energy CT (SECT) to distinguish between ferromagnetic and non-ferromagnetic ballistic projectiles to improve safety regarding magnetic resonance (MR) imaging studies in patients with retained projectiles. MATERIALS AND METHODS Twenty-seven ballistic projectiles including 25 bullets (diameter, 3-15 mm) and 2 shotgun pellets (2 mm each) were examined in an anthropomorphic chest phantom using 128-section dual-source CT. Data acquisition was performed with tube voltages set at 80, 100, 120, and 140 kV(p). Two readers independently assessed CT numbers of the projectile's core on images reconstructed with an extended CT scale. Dual-energy indices (DEIs) were calculated from both 80-/140-kV(p) and 100-/140-kV(p) pairs; receiver operating characteristics curves were fitted to assess ferromagnetic properties by means of CT numbers and DEI. RESULTS Nine (33%) of the projectiles were ferromagnetic; 18 were nonferromagnetic (67%). Interreader and intrareader correlations of CT number measurements were excellent (intraclass correlation coefficients, >0.906; P<0.001). The DEI calculated from both 80/140 and 100/140 kV(p) were significantly (P<0.05) different between the ferromagnetic and non-ferromagnetic projectiles. The area under the curve (AUC) was 0.75 and 0.8 for the tube voltage pairs of 80/140 and 100/140 kV(p) (P<0.05; 95% confidence interval, 0.57-0.94 and 0.62-0.97, respectively) to differentiate between the ferromagnetic and non-ferromagnetic ballistic projectiles; which increased to 0.83 and 0.85 when shotgun pellets were excluded from the analysis. The AUC for SECT was 0.69 and 0.73 (80 and 100 kV[p], respectively). CONCLUSIONS Measurements of DECT combined with an extended CT scale allow for the discrimination of projectiles with non-ferromagnetic from those with ferromagnetic properties in an anthropomorphic chest phantom with a higher AUC compared with SECT. This study indicates that DECT may have the potential to contribute to MR safety and allow for MR imaging of patients with retained projectiles. However, further studies are necessary before this concept may be used to triage clinical patients before MR.
Resumo:
PURPOSE The aim of this study was to compare the diagnostic accuracy of 3D time-of-flight (TOF-MRA) and contrast-enhanced (CE-MRA) magnetic resonance angiography at 3 T for detection and quantification of proximal high-grade stenosis using multidetector computed tomography angiography (MDCTA) as reference standard. METHODS The institutional ethics committee approved this prospective study. A total of 41 patients suspected of having internal carotid artery (ICA) stenosis underwent both MDCTA and MRA. CE-MRA and TOF-MRA were performed using a 3.0-T imager with a dedicated eight-element cervical coil. ICA stenoses were measured according to the North American Symptomatic Carotid Endarterectomy Trial criteria and categorized as 0-25 % (minimal), 25-50 % (mild), 50-69 % (moderate), 70-99 % (high grade), and 100 % (occlusion). Sensitivity and specificity for the detection of high-grade ICA stenoses (70-99 %) and ICA occlusions were determined. In addition, intermodality agreement was assessed with κ-statistics for detection of high-grade ICA stenoses (70-99 %) and ICA occlusions. RESULTS A total of 80 carotid arteries of 41 patients were reviewed. Two previously stented ICAs were excluded from analysis. On MDCTA, 7 ICAs were occluded, 12 ICAs presented with and 63 without a high-grade ICA stenosis (70-99 %). For detecting 70-99 % stenosis, both 3D TOF-MRA and CE-MRA were 91.7 % sensitive and 98.5 % specific, respectively. Both MRA techniques were highly sensitive (100 %), and specific (CE-MRA, 100 %; TOF-MRA, 98.7 %) for the detection of ICA occlusion. However, TOF-MRA misclassified one high-grade stenosis as occlusion. Intermodality agreement for detection of 70-99 % ICA stenoses was excellent between TOF-MRA and CE-MRA [κ = 0.902, 95 % confidence interval (CI) = 0.769-1.000], TOF-MRA and MDCTA (κ = 0.902, 95 % CI = 0.769-1.000), and CE-MRA and MDCTA (κ = 0.902, 95 % CI = 0.769-1.000). CONCLUSION Both 3D TOF-MRA and CE-MRA at 3 T are reliable tools for detecting high-grade proximal ICA stenoses (70-99 %). 3D TOF-MRA might misclassify pseudo-occlusions as complete occlusions. If there are no contraindications for CE-MRA, CE-MRA is recommended as primary MR imaging modality.
Resumo:
Diseases of paranasal sinuses and nasal passages in horses can be a diagnostic challenge because of the complex anatomy of the head and limitations of many diagnostic modalities. Our hypothesis was that magnetic resonance (MR) imaging would provide excellent anatomical detail and soft tissue resolution, and would be accurate in the diagnosis of diseases of the paranasal sinuses and nasal passages in horses. Fourteen horses were imaged. Inclusion criteria were lesions located to the sinuses or nasal passages that underwent MR imaging and subsequent surgical intervention and/or histopathologic examination. A low field, 0.3 tesla open magnet was used. Sequences in the standard protocol were fast spin echo T2 sagittal and transverse, spin echo T1 transverse, short-tau inversion recovery (STIR) dorsal, gradient echo 3D T1 MPR dorsal (plain and contrast enhanced), spin echo T1 fatsat (contrast enhanced). Mean scan time to complete the examination was 53 min (range 39-99 min). Lesions identified were primary or secondary sinusitis (six horses), paranasal sinus cyst (four horses), progressive ethmoid hematoma (two horses), and neoplasia (two horses). The most useful sequences were fast spin echo T2 transverse and sagittal, STIR dorsal and FE3D MPR (survey and contrast enhanced). Fluid accumulation, mucosal thickening, presence of encapsulated contents, bone deformation, and thickening were common findings observed in MR imaging. In selected horses, magnetic resonance imaging is a useful tool in diagnosing lesions of the paranasal sinuses and nasal passages.
Resumo:
PURPOSE To investigate the feasibility of MR diffusion tensor imaging (DTI) of the median nerve using simultaneous multi-slice echo planar imaging (EPI) with blipped CAIPIRINHA. MATERIALS AND METHODS After federal ethics board approval, MR imaging of the median nerves of eight healthy volunteers (mean age, 29.4 years; range, 25-32) was performed at 3 T using a 16-channel hand/wrist coil. An EPI sequence (b-value, 1,000 s/mm(2); 20 gradient directions) was acquired without acceleration as well as with twofold and threefold slice acceleration. Fractional anisotropy (FA), mean diffusivity (MD) and quality of nerve tractography (number of tracks, average track length, track homogeneity, anatomical accuracy) were compared between the acquisitions using multivariate ANOVA and the Kruskal-Wallis test. RESULTS Acquisition time was 6:08 min for standard DTI, 3:38 min for twofold and 2:31 min for threefold acceleration. No differences were found regarding FA (standard DTI: 0.620 ± 0.058; twofold acceleration: 0.642 ± 0.058; threefold acceleration: 0.644 ± 0.061; p ≥ 0.217) and MD (standard DTI: 1.076 ± 0.080 mm(2)/s; twofold acceleration: 1.016 ± 0.123 mm(2)/s; threefold acceleration: 0.979 ± 0.153 mm(2)/s; p ≥ 0.074). Twofold acceleration yielded similar tractography quality compared to standard DTI (p > 0.05). With threefold acceleration, however, average track length and track homogeneity decreased (p = 0.004-0.021). CONCLUSION Accelerated DTI of the median nerve is feasible. Twofold acceleration yields similar results to standard DTI. KEY POINTS • Standard DTI of the median nerve is limited by its long acquisition time. • Simultaneous multi-slice acquisition is a new technique for accelerated DTI. • Accelerated DTI of the median nerve yields similar results to standard DTI.
Resumo:
Purpose To determine renal oxygenation changes associated with uninephrectomy and transplantation in both native donor kidneys and transplanted kidneys by using blood oxygenation level-dependent (BOLD) MR imaging. Materials and Methods The study protocol was approved by the local ethics committee. Thirteen healthy kidney donors and their corresponding recipients underwent kidney BOLD MR imaging with a 3-T imager. Written informed consent was obtained from each subject. BOLD MR imaging was performed in donors before uninephrectomy and in donors and recipients 8 days, 3 months, and 12 months after transplantation. R2* values, which are inversely related to tissue partial pressure of oxygen, were determined in the cortex and medulla. Longitudinal R2* changes were statistically analyzed by using repeated measures one-way analysis of variance with post hoc pair-wise comparisons. Results R2* values in the remaining kidneys significantly decreased early after uninephrectomy in both the medulla and cortex (P < .003), from 28.9 sec(-1) ± 2.3 to 26.4 sec(-1) ± 2.5 in the medulla and from 18.3 sec(-1) ± 1.5 to 16.3 sec(-1) ± 1.0 in the cortex, indicating increased oxygen content. In donors, R2* remained significantly decreased in both the medulla and cortex at 3 (P < .01) and 12 (P < .01) months. In transplanted kidneys, R2* remained stable during the first year after transplantation, with no significant change. Among donors, cortical R2* was found to be negatively correlated with estimated glomerular filtration rate (R = -0.47, P < .001). Conclusion The results suggest that BOLD MR imaging may potentially be used to monitor renal functional changes in both remaining and corresponding transplanted kidneys. (©) RSNA, 2016.
Resumo:
A tenet of modern radiotherapy (RT) is to identify the treatment target accurately, following which the high-dose treatment volume may be expanded into the surrounding tissues in order to create the clinical and planning target volumes. Respiratory motion can induce errors in target volume delineation and dose delivery in radiation therapy for thoracic and abdominal cancers. Historically, radiotherapy treatment planning in the thoracic and abdominal regions has used 2D or 3D images acquired under uncoached free-breathing conditions, irrespective of whether the target tumor is moving or not. Once the gross target volume has been delineated, standard margins are commonly added in order to account for motion. However, the generic margins do not usually take the target motion trajectory into consideration. That may lead to under- or over-estimate motion with subsequent risk of missing the target during treatment or irradiating excessive normal tissue. That introduces systematic errors into treatment planning and delivery. In clinical practice, four-dimensional (4D) imaging has been popular in For RT motion management. It provides temporal information about tumor and organ at risk motion, and it permits patient-specific treatment planning. The most common contemporary imaging technique for identifying tumor motion is 4D computed tomography (4D-CT). However, CT has poor soft tissue contrast and it induce ionizing radiation hazard. In the last decade, 4D magnetic resonance imaging (4D-MRI) has become an emerging tool to image respiratory motion, especially in the abdomen, because of the superior soft-tissue contrast. Recently, several 4D-MRI techniques have been proposed, including prospective and retrospective approaches. Nevertheless, 4D-MRI techniques are faced with several challenges: 1) suboptimal and inconsistent tumor contrast with large inter-patient variation; 2) relatively low temporal-spatial resolution; 3) it lacks a reliable respiratory surrogate. In this research work, novel 4D-MRI techniques applying MRI weightings that was not used in existing 4D-MRI techniques, including T2/T1-weighted, T2-weighted and Diffusion-weighted MRI were investigated. A result-driven phase retrospective sorting method was proposed, and it was applied to image space as well as k-space of MR imaging. Novel image-based respiratory surrogates were developed, improved and evaluated.
Resumo:
Urachal carcinoma is a rare neoplasm, which accounts for only 0.5–2% of bladder malignancies, and arises from a remnant of the fetal genitourinary tract. A 46-year-old woman presented with a history of pelvic pain and frequent daytime urination. Ultrasound (US), computed tomography (CT), and magnetic resonance (MR) demonstrated a supravesical heterogeneous mass with calcifications. The patient underwent a partial cystectomy with en-bloc resection of the mass and histopathological examination revealed the diagnosis of urachal adenocarcinoma. Urachal carcinomas are usually associated with poor prognosis and early diagnosis is fundamental. CT and MR are useful to correctly diagnose and preoperatively staging.