968 resultados para MODIFIED PT(111) ELECTRODES
Resumo:
Three-component ferroelectric superlattices consisting of alternating layers of SrTiO3, BaTiO3, and CaTiO3 (SBC) with variable interlayer thickness were fabricated on Pt(111)/TiO2/SiO2/Si (100) substrates by pulsed laser deposition. The presence of satellite reflections in x-ray-diffraction analysis and a periodic concentration of Sr, Ba, and Ca throughout the film in depth profile of secondary ion mass spectrometry analysis confirm the fabrication of superlattice structures. The Pr (remnant polarization) and Ps (saturation polarization) of SBC superlattice with 16.4-nm individual layer thickness (SBC16.4) were found to be around 4.96 and 34 μC/cm2, respectively. The dependence of polarization on individual layer thickness and lattice strain were studied in order to investigate the size dependence of the dielectric properties. The dielectric constant of these superlattices was found to be much higher than the individual component layers present in the superlattice configuration. The relatively higher tunability ( ∼ 55%) obtained around 300 K indicates that the superlattice is a potential electrically tunable material for microwave applications at room temperature. The enhanced dielectric properties were thus discussed in terms of the interfacial strain driven polar region due to high lattice mismatch and electrostatic coupling due to polarization mismatch between individual layers.
Resumo:
Ferroelectric superlattice structures consisting of alternating layers of BaTiO3 and SrTiO3 with variable interlayer thickness were grown on Pt (111)/TiO2/SiO2/Si (100) substrates by pulsed laser deposition. The presence of superlattice reflections in the x-ray diffraction pattern clearly showed the superlattice behavior of the fabricated structures over a range of 6.4–20 nm individual layer thicknesses. Depth profile conducted by secondary ion mass spectrometry analysis showed a periodic concentration of Ba and Sr throughout the film. Polarization hysteresis and the capacitance-voltage characteristics of these films show clear size dependent ferroelectric characteristics. The spontaneous (Ps) and remnant (Pr) polarizations increase gradually with decreasing periodicity, reach a maximum at a finite thickness and then decrease. The competition between the size effect and long-range ferroelectric interaction is suggested as a possible reason for this phenomenon. The temperature dependence of Ps and Pr shows a single ferroelectric phase transition, and the Curie temperature is estimated to be about 316 K. The curve shows that the ferroelectric superlattice tends to form an artificial material, responding as a single structure with an averaged behavior of both the parent systems.
Resumo:
The interactions of N2, formic acid and acetone on the Ru(001) surface are studied using thermal desorption mass spectrometry (TDMS), electron energy loss spectroscopy (EELS), and computer modeling.
Low energy electron diffraction (LEED), EELS and TDMS were used to study chemisorption of N2 on Ru(001). Adsorption at 75 K produces two desorption states. Adsorption at 95 K fills only the higher energy desorption state and produces a (√3 x √3)R30° LEED pattern. EEL spectra indicate both desorption states are populated by N2 molecules bonded "on-top" of Ru atoms.
Monte Carlo simulation results are presented on Ru(001) using a kinetic lattice gas model with precursor mediated adsorption, desorption and migration. The model gives good agreement with experimental data. The island growth rate was computed using the same model and is well fit by R(t)m - R(t0)m = At, with m approximately 8. The island size was determined from the width of the superlattice diffraction feature.
The techniques, algorithms and computer programs used for simulations are documented. Coordinate schemes for indexing sites on a 2-D hexagonal lattice, programs for simulation of adsorption and desorption, techniques for analysis of ordering, and computer graphics routines are discussed.
The adsorption of formic acid on Ru(001) has been studied by EELS and TDMS. Large exposures produce a molecular multilayer species. A monodentate formate, bidentate formate, and a hydroxyl species are stable intermediates in formic acid decomposition. The monodentate formate species is converted to the bidentate species by heating. Formic acid decomposition products are CO2, CO, H2, H2O and oxygen adatoms. The ratio of desorbed CO with respect to CO2 increases both with slower heating rates and with lower coverages.
The existence of two different forms of adsorbed acetone, side-on, bonded through the oxygen and acyl carbon, and end-on, bonded through the oxygen, have been verified by EELS. On Pt(111), only the end-on species is observed. On dean Ru(001) and p(2 x 2)O precovered Ru(001), both forms coexist. The side-on species is dominant on clean Ru(001), while O stabilizes the end-on form. The end-on form desorbs molecularly. Bonding geometry stability is explained by surface Lewis acidity and by comparison to organometallic coordination complexes.
Resumo:
随着我国工业的快速发展,环境污染日益严重,其中重金属已经成为最主要的污染物 之一。重金属具有分布广泛、半衰期长等特点,因而对人们的生产生活危害巨大。镉作为 一种常见的重金属污染物,它能够引发废用性萎缩、肾功能衰竭和感染等疾病,因此对环 境中存在的痕量镉的进行检测显得极为重要。传统的痕量分析方法包括光谱分析法和色谱 分析法,但这两方法所使用的仪器比较笨重,操作过程复杂,因而不适于在线分析。电化 学分析方法因其快速、便携、价格低廉、灵敏度高等特点而受到了人们的广泛关注,其中 较为常用的阳极溶出伏安法已经在镉离子等重金属离子的现场快速高灵敏检测中发挥了 重要作用。然而传统阳极溶出法中使用的汞电极因具有毒性而被许多国家禁止使用,所以 寻找汞电极的替代电极成为近年来的阳极溶出技术的研究热点。铋膜电极因具有类似汞电 极的分析性能且环境友好而受到了广泛重视,特别是各种化学修饰方法使得铋膜电极的性 能得到了显著提高。但是目前铋膜电极仍存在稳定性低、抗干扰能力差等问题,这些不足 严重制约了该类电极在重金属的阳极溶出分析中的应用。本文旨在通过新的化学修饰方法 解决铋膜电极应用中的瓶颈问题,发展具有优异分析性能的化学修饰铋膜电极应用于镉离 子等重金属离子的阳极溶出分析。本文的主要研究内容包括: l)以阳极溶出法测定镉离子为例,研究了化学修饰铋膜电极的响应特性,考察了富 集时间、富集电位、铋离子浓度、离子载体浓度和Nafion 浓度等实验条件对检测灵敏度的 影响。 2)将离子载体引入铋膜电极与Nafion 结合使用,研究了镉离子在该电极上的阳极溶 出响应,并探讨了铜、铅、铟三种金属离子对镉离子检测选择性的影响。将这种改良后的 化学修饰铋膜电极用于实际海水样品的检测,所得结果与ICP-MS 的测量结果基本一致。 3)将四氟硼酸钠引入铋膜电极与离子载体、碳纳米管结合使用,研究了镉离子在该 电极上的阳极溶出响应,考察了铜、铅、铟离子对镉离子测定的影响。 4)考察了电解富集和开路电位富集两种富集方式对电极灵敏度和选择性的影响。 实验表明:通过预富集,在未除氧的溶液中即可得到显著的镉离子溶出电流峰,且背 景噪音低;加入离子载体后,电极对目标金属有良好的选择性,可以在复杂基体条件下测 定重金属离子镉;电解富集条件下电极的的灵敏度较高,而开路电位富集条件下电极的选 择性较好。这种环保的无汞化学修饰电极为海水中重金属污染物的检测提供了新的手段。
Resumo:
随着工农业生产的迅速发展,重金属污染问题越来越严重。由于重金属能 够在土壤、水体等环境中不断积累,并且通过食物链而进入人体内蓄积,因此对 人类健康构成潜在的危害。当人体内重金属含量过量时,会导致各种疾病的发生。 所以对痕量重金属污染物进行监测和分析,在食品安全、临床诊断和环境监测等 方面具有重要的现实意义。因此,研究快速、准确、灵敏、方便的检测重金属的 新方法十分必要。 近年来,化学修饰电极由于能够赋予电极新的、特定的功能,在提高电化 学选择性和灵敏度方面有着独特的优越性,因而成为电分析化学领域研究的热 点,并且被广泛应用于重金属元素的测定。但是,由于电极材料的限制,灵敏度 虽然有所改进,却始终很难达到一个新的高度。要提高化学修饰电极对重金属检 测的灵敏度,必须加入一些辅助的方法。 最近,纳米材料在很多分析方法中得到广泛应用,这些材料表现出很多它 们在常规尺度时所没有的独特的性质,如量子尺寸效应、表面效应、小尺寸效应、 量子隧道效应以及介电限域效应等。因此,作为一种新型的电极材料在电化学检 测和分析方面受到人们的日益关注。由于纳米材料本身具有大的比表面积和高的 表面自由能,这种纳米材料修饰电极的灵敏度得到大幅度提高。 离子载体是一类具有一个特定空腔的大环分子,能够从溶液中实现对某一 特定离子的萃取使之进入到有机相中。离子载体是电位型传感器敏感膜中的核心 成分,尽管它具有很高的选择性,但是除了电位分析外,在其它方面的用途却很 少被关注,可能是由于其本身的非导电性能所致。本论文采用纳米材料所特有的 对重金属离子强大的吸附性能和离子载体优良的选择性,制备了纳米材料及离子 载体修饰玻碳电极并用来对实际水样中痕量的重金属进行检测。主要内容包括以 下几个方面: 1.制备新型碳纳米管/铋膜复合修饰电极,研究了重金属钴在电极上的电化 学性能。结果表明,这种新型复合修饰电极的灵敏度得到显著提高,能实现最低 检测限为8´10-11 M的钴的吸附富集溶出。 2.利用羟基磷灰石的强吸附能力和碳纳米管的优异电化学性能,制备了新型 新型纳米材料及离子载体化学修饰电极的制备及其在痕量重金属污染物检测中的应用 II 的碳纳米管-纳米羟基磷灰石的双纳米复合材料,并将其用于金属镉的富集溶出。 结果表明,双纳米复合材料具有比单一材料更优异的性能,更有助于金属镉的富 集溶出。采用碳纳米管-纳米羟基磷灰石的双纳米复合材料修饰电极,能实现最 低检测限为4´10-9 M的镉的富集溶出,灵敏度得到明显提高。 3. 将导电性好、抗氧干扰能力强的铋膜与对重金属具有良好选择性的离子 载体相结合,制备了基于铋膜/离子载体的新型修饰电极,研究了金属铅在其表 面的富集溶出。结果表明,这种新型修饰电极的灵敏度和选择性都大为提高,具 有更高的溶出峰电流和更好的抗干扰能力,可以实现最低检测限为4.4´10-11 M 的铅的富集溶出。 4. 利用羟基磷灰石的强吸附能力和其三维多孔结构、离子载体对重金属离 子优异的选择性以及Nafion 膜良好的离子交换作用和化学稳定性,制备了基于 纳米材料和离子载体的新型化学修饰电极。这种方法不仅有助于提高对金属铅的 选择性和灵敏度,而且大大提高了富集效率。采用该新型化学修饰电极,能够实 现最低检测限为1´10-9 M的铅的富集溶出。
Resumo:
Electrodeposition of silver nanostructures on a polyamidoamine (PAMAM) dendrimers-modified surface has been reported. The assembled PAMAM monolayer film was used as a substrate for electrodeposition. We found that the PAMAM dendrimers obviously affected nucleation growth and silver nanostructures (spherical, dendritic and "fish bone" shapes) were obtained, which were different from those deposited on unmodified surfaces. It was attributed to the unique structures and properties of PAMAM dendrimers compared with linear polymers.
Resumo:
Through layer-by-layer (LBL) assembly technique, iron oxide (Fe3O4) nanoparticles coated by poly (diallyldimethylammonium chloride) (PDDA) and Preyssler-type polyoxometalates (NH4)(14)NaP5W30O110.31H(2)O (P5W30) were alternately deposited on quartz and ITO substrates, and 4-aminobenzoic acid modified glassy carbon electrodes. Thus-prepared multilayer films were characterized by UV-visible spectroscopy, X-ray photoelectron spectroscopy, and cyclic voltammetry. It was proved that the multilayer films are uniform and stable. And the electrocatalytic activities of the multilayer films can be fine-tuned by adjusting the assembly conditions in the LBL assembly process, such as the pH of the assembly solution. The multilayer films fabricated from P5W30 solutions dissolved in 0.1 M H2SO4 exhibit high electrocatalytic response and sensitivity toward the reduction of two substrates of important analytical interests, HNO2 and IO3- whereas the films assembled with P5W30 solutions dissolved in 1.0 M H2SO4 show remarkable electrocatalytic activity for the hydrogen evolution reaction (HER). Furthermore, the electrocatalytic properties of the HER of the latter film can be obtained from the former film upon exposure to 1.0 M H2SO4 for several hours.
Resumo:
A novel method is employed for the simultaneous determination of both the calibration constant of an electrochemical quartz crystal microbalance (EQCM) and the active surface area of a polycrystalline gold electrode. A gold electrode: is immersed into a 1 mM KI/1 M H2SO4 solution and on which forms a neutral monolayer. The adsorbed iodine can then be completely oxidized into IO3-. The active surface area of a gold electrode can be obtained from the net electrolytic charge of the oxidation process, and the calibration constant in the EQCM can be calculated from the corresponding frequency shift. The result shows that this method is simple, convenient and valid. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
A simple route to the fabrication of multilayer films containing Pd nanoparticles is described. Following layer-by-layer assembly of PdCl42- and polycation, QPVP-Os (a quaternized poly(4-vinylpyridine) complexed with [Os(bpy)(2)Cl](2+/+)), on 4-aminobenzoic acid-modified glassy carbon electrodes, the three-dimensional Pd nanoparticle multilayer films are directly formed on electrode surfaces via electrochemical reduction of PdCl42- sandwiched between polymers. The growth of PdCl42- is easy on electrode surfaces by electrostatic interaction, and the assembly processes are monitored by cyclic voltammetry and UV-vis spectroscopy. The depth profile analyses by X-ray photoelectron spectroscopy verify the constant composition of the Pd nanoparticle multilayer films. Atomic force microscopy proves that the as-prepared Pd nanoparticles are uniformly distributed with an average particle diameter of 3-7 mn. The resulting Pd nanoparticle multilayer-modified electrode possesses high catalytic activity for the reduction of dissolved oxygen and oxidation of hydrazine compounds in aqueous solution.
Resumo:
The electrochemical behaviour of N-benzylaniline polymerization is determined by the nature of the electrolyte. The voltammograms for a poly-N-benzylaniline modified Pt electrode prepared in 1 M HCl (abbreviated to PBAn(HCl)), and 1 M H2SO4 (PBAn(H2SO4)) tested in 1 M hydrochloric, sulfuric, and perchloric acid were almost superimposable. The polymer film electrode prepared in 1 M HClO4 (abbreviated to PBAn(HClO4)) is electroinactive, and exhibits only charging behaviour in 1 M HClO4 solution and can be activated in hydrochloric or other acid electrolytes with a smaller anion. These interesting phenomena are explained in terms of the anions catalyzing the loss of benzyl groups.
Resumo:
The work presented in this thesis described the development of low-cost sensing and separation devices with electrochemical detections for health applications. This research employs macro, micro and nano technology. The first sensing device developed was a tonerbased micro-device. The initial development of microfluidic devices was based on glass or quartz devices that are often expensive to fabricate; however, the introduction of new types of materials, such as plastics, offered a new way for fast prototyping and the development of disposable devices. One such microfluidic device is based on the lamination of laser-printed polyester films using a computer, printer and laminator. The resulting toner-based microchips demonstrated a potential viability for chemical assays, coupled with several detection methods, particularly Chip-Electrophoresis-Chemiluminescence (CE-CL) detection which has never been reported in the literature. Following on from the toner-based microchip, a three-electrode micro-configuration was developed on acetate substrate. This is the first time that a micro-electrode configuration made from gold; silver and platinum have been fabricated onto acetate by means of patterning and deposition techniques using the central fabrication facilities in Tyndall National Institute. These electrodes have been designed to facilitate the integration of a 3- electrode configuration as part of the fabrication process. Since the electrodes are on acetate the dicing step can automatically be eliminated. The stability of these sensors has been investigated using electrochemical techniques with excellent outcomes. Following on from the generalised testing of the electrodes these sensors were then coupled with capillary electrophoresis. The final sensing devices were on a macro scale and involved the modifications of screenprinted electrodes. Screen-printed electrodes (SPE) are generally seen to be far less sensitive than the more expensive electrodes including the gold, boron-doped diamond and glassy carbon electrodes. To enhance the sensitivity of these electrodes they were treated with metal nano-particles, gold and palladium. Following on from this, another modification was introduced. The carbonaceous material carbon monolith was drop-cast onto the SPE and then the metal nano-particles were electrodeposited onto the monolith material
Resumo:
The C-H activation on metal oxides is a fundamental process in chemistry. In this paper, we report a density functional theory study on the process of the C-H activation of CH4 on Pd(111), Pt(111), Ru(0001), Tc(0001), Cu(111), PdO(001), PdO(110), and PdO(100). A linear relationship between the C-H activation barrier and the chemisorption in the dissociation final state on the metal surfaces is obtained, which is consistent with the work in the literature. However, the relationship is poor on the metal oxide surfaces. Instead, a strong linear correlation between the barrier and the lattice O-H bond strength is found on the oxides. The new linear relationship is analyzed and the physical origin is identified. (c) 2008 American Institute of Physics.
Resumo:
Catalytic formation of N2O via a (NO)(2) intermediate was studied employing density functional theory with generalized gradient approximations. Dimer formation was not favored on Pt(111), in agreement with previous reports. On Pt(211) a variety of dimer structures were studied, including trans-(NO)(2) and cis-(NO)(2) configurations. A possible pathway involving (NO)(2) formation at the terrace near to a Pt step is identified as the possible mechanism for low-temperature N2O formation. The dimer is stabilized by bond formation between one O atom of the dimer and two Pt step atoms. The overall mechanism has a low barrier of approximately 0.32 eV. The mechanism is also put into the context of the overall NO+H-2 reaction. A consideration of the step-wise hydrogenation of O-(ads) from the step is also presented. Removal of O-(ads) from the step is significantly different from O-(ads) hydrogenation on Pt(111). The energetically favored structure at the transition state for OH(ads) formation has an activation energy of 0.63 eV. Further hydrogenation of OH(ads) has an activation energy of 0.80 eV. (C) 2004 American Institute of Physics.
Resumo:
Water, one of the most popular species in our planet, can play a catalytic role in many reactions, including reactions in heterogeneous catalysis. In a recent experimental work, Bergeld, Kasemo, and Chakarov demonstrated that water is able to promote CO oxidation under low temperatures (similar to200 K). In this study, we choose CO oxidation on Pt(111) in the presence of water as a model system to address the catalytic role of water for surface reactions in general using density functional theory. Many elementary steps possibly involved in the CO oxidation on Pt(111) at low temperatures have been investigated. We find the following. First, in the presence of water, the CO oxidation barrier is reduced to 0.33 eV (without water the barrier is 0.80 eV). This barrier reduction is mainly due to the H-bonding between the H in the H2O and the O at the transition state (TS), which stabilizes the TS. Second, CO can readily react with OH with a barrier of 0.44 eV, while COOH dissociation to produce CO2 is not easy (the barrier is 1.02 eV). Third, in the H2O+OH mixed phase, CO can be easily converted into CO2. It occurs through two steps: CO reacts with OH, forming COOH; and COOH transfers the H to a nearby H2O and, at the same time, an H in the H2O transfers to a OH, leading to CO2 formation. The reaction barrier of this process is 0.60 eV under CO coverage of 1/6 ML and 0.33 eV under CO coverage of 1/3 ML. The mechanism of CO oxidation at low temperatures is discussed. On the basis of our calculations, we propose that the water promotion effect can in general be divided into two classes: (i) By H-bonding between the H of H2O and an electron negative species such as the O in the reaction of CO+O+H2O-->CO2+H2O, H2O can stabilize the TS of the reaction and hence reduce the barrier. (ii) H2O first dissociates into H and OH and then OH or H participates directly in the reaction to induce new reaction mechanism with more favorable routes, in which OH or H can act as an intermediate. (C) 2003 American Institute of Physics.
Resumo:
In heterogeneous catalysis, the two main reaction mechanisms which have been proposed are the Langmuir-Hinshelwood and the Eley-Rideal. For the vast majority of surface catalytic reactions, it has been accepted that the Langmuir-Hinshelwood mechanism is preferred. In this study, we investigate catalytic CO oxidation on Pt(111). It is found that reaction barriers for Langmuir-Hinshelwood mechanisms actually tend to be higher than those for Eley-Rideal ones. An explanation is presented as to why it is still more probable for the reaction to proceed via the Langmuir-Hinshelwood mechanism, despite its higher reaction barrier. (C) 2002 American Institute of Physics.