527 resultados para MICELLES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The unique features of a macromolecule and water as a solvent make the issue of solvation unconventional, with questions about the static versus dynamic nature of hydration and the, physics of orientational and translational diffusion at the boundary. For proteins, the hydration shell that covers the surface is critical to the stability of its structure and function. Dynamically speaking, the residence time of water at the surface is a signature of its mobility and binding. With femtosecond time resolution it is possible to unravel the shortest residence times which are key for the description of the hydration layer, static or dynamic. In this article we review these issues guided by experimental studies, from this laboratory, of polar hydration dynamics at the surfaces of two proteins (Subtilisin Carlsberg (SC) and Monellin). The natural probe tryptophan amino acid was used for the interrogation of the dynamics, and for direct comparison we also studied the behavior in bulk water - a complete hydration in 1 ps. We develop a theoretical description of solvation and relate the theory to the experimental observations. In this - theoretical approach, we consider the dynamical equilibrium in the hydration shell, defining the rate processes for breaking and making the transient hydrogen bonds, and the effective friction in the layer which is defined by the translational and orientational motions of water molecules. The relationship between the residence time of water molecules and the observed slow component in solvation dynamics is a direct one. For the two proteins studied, we observed a "bimodal decay" for the hydration correlation function, with two primary relaxation times: ultrafast, typically 1 ps or less, and longer, typically 15-40 ps, and both are related to the residence time at the protein surface, depending on the binding energies. We end by making extensions to studies of the denatured state of the protein, random coils, and the biomimetic micelles, and conclude with our thoughts on the relevance of the dynamics of native structures to their functions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we have prepared Ag-nanorods using biscationic gemini surfactant micelles as the media by a seed-mediated wet synthesis method. Towards this end, we first synthesized Ag-nanoseeds of diameter similar to 7 nm stabilized by trisodium citrate (as the capping agent). Then these Ag-nanoseeds were used to synthesize Ag-nanorods of different aspect ratios. With decreasing Ag-nanoseed concentration, the aspect ratios of the Ag-nanorods stabilized by these gemini surfactants increased gradually. Various Ag-nanoseeds and Ag-nanospecies were characterized using UV-Vis spectroscopy (to know the surface plasmon bands), transmission electron microscopy (to find out their particle sizes and distribution), energy-dispersive X-ray spectroscopy and X-ray diffraction. When we used micelles derived from gemini surfactants of shorter spacer-(CH(2))(n)-(n = 2 or 4) to stabilize the Ag-nanorods, the lambda(max) of the longitudinal band shifted more towards the blue region compared to that of the gemini surfactant micelles with a longer spacer-(CH(2))(n)-(n = 5, 12) at a given amount of the Ag-nanoseed solution. So, the growth of Ag-nanorods in the gemini micellar solutions depends on the spacer-chain length of gemini surfactants employed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanoparticle synthesis in a microemulsion route is typically controlled by changing the water to surfactant ratio, concentration of precursors, and/or concentration of micelles. The experiments carried out in this work with chloroauric acid and hydrazine hydrate as precursors in water/AOT-Brij30/isooctane microemulsions show that the reagent addition rate can also be used to tune the size of stable spherical gold nanoparticles to some extent. The particle size goes through a minimum with variation in feed addition rate. The increase in particle size with an increase in reaction temperature is in agreement with an earlier report. A population balance model is used to interpret the experimental findings. The reduced extent of nucleation at low feed addition rates and suppression of nucleation due to the finite rate of mixing at higher addition rates produce a minimum in particle size. The increase in particle size at higher reaction temperatures is explained through an increase in fusion efficiency of micelles which dissipates supersaturation; increase in solubility is shown to play an insignificant role. The moderate polydispersity of the synthesized particles is due to the continued nucleation and growth of particles. The polydispersity of micelle sizes by itself plays a minor role.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report our studies of the linear and nonlinear rheology of aqueous solutions of the surfactant cetyl trimethylammonium tosylate (CTAT) with varying amounts of sodium chloride (NaCl). The CTAT concentration is fixed at 42 mM, and the salt concentration is varied between 0 and 120 mM. On increasing the salt (NaCl) concentration, we see three distinct regimes in the zero-shear viscosity and the high-frequency plateau modulus data. In regime 1, the zero-shear viscosity shows a weak increase with salt concentration due to enhanced micellar growth. The decrease in the zero-shear viscosities with salt concentration in regimes II and III can be explained in terms of intermicellar branching. The most intriguing feature of our data, however, is the anomalous behavior of the high-frequency plateau modulus in regime II (0.12 less than or equal to [NaCl]/[CTAT] less than or equal to 1.42). In this regime, the plateau modulus increases with an increase in NaCl concentration. This is highly interesting, since the correlation length of concentration fluctuations and hence the plateau modulus G(0) are not expected to change appreciably in the semidilute regime. We propose to explain the changes in regime II in terms of a possible unbinding of the organic counterions (tosylate) from the CTA(+) surfaces on the addition of NaCl. In the nonlinear flow curves of the samples with high salt content, significant deviations from the predictions of the Giesekus model for entangled micelles are observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have carried out small-angle X-ray diffraction studies on complexes formed by the anionic polyelectrolytes, namely, sodium salts of double and single stranded (ds and ss) DNA, poly( glutamic acid) ( PGA), poly( acrylic acid) (PAA), and poly( styrene sulfonate) (PSS) with a cationic surfactant system consisting of cetyltrimethylammonium bromide ( CTAB) and sodium 3-hydroxy-2-naphthoate (SHN). All complexes have a two-dimensional (2D) hexagonal structure at low SHN concentrations. DNA-CTAB-SHN complexes exhibit a hexagonal to lamellar transition near the SHN concentration at which CTAB-SHN micelles show a cylinder to bilayer transformation. On the other hand, PGA and PAA complexes form a 2D centered rectangular phase at higher SHN concentrations, and PSS complexes show a primitive rectangular structure. These results provide a striking example of polyion specificity in polyelectrolytesurfactant interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several surfactant molecules self-assemble in solution to form long, flexible wormlike micelles which get entangled with each other, leading to viscoelastic gel phases. We discuss our recent work on the rheology of such a gel formed in the dilute aqueous solutions of a surfactant CTAT. In the linear rheology regime, the storage modulus G′(ω) and loss modulus G″(ω) have been measured over a wide frequency range. In the nonlinear regime, the shear stress σ shows a plateau as a function of the shear rate math above a certain cutoff shear rate mathc. Under controlled shear rate conditions in the plateau regime, the shear stress and the first normal stress difference show oscillatory time-dependence. The analysis of the measured time series of shear stress and normal stress has been done using several methods incorporating state space reconstruction by embedding of time delay vectors. The analysis shows the existence of a finite correlation dimension and a positive Lyapunov exponent, unambiguously implying that the dynamics of the observed mechanical instability can be described by that of a dynamical system with a strange attractor of dimension varying from 2.4 to 2.9.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Water brings its remarkable thermodynamic and dynamic anomalies in the pure liquid state to biological world where water molecules face a multitude of additional interactions that frustrate its hydrogen bond network. Yet the water molecules participate and control enormous number of biological processes in manners which are yet to be understood at a molecular level. We discuss thermodynamics, structure, dynamics and properties of water around proteins and DNA, along with those in reverse micelles. We discuss the roles of water in enzyme kinetics, in drug-DNA intercalation and in kinetic-proof reading ( the theory of lack of errors in biosynthesis). We also discuss how water may play an important role in the natural selection of biomolecules. (C) 2011 Elsevier B. V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the dynamics of a spherical steel ball falling freely through a solution of entangled wormlike-micelles. If the sphere diameter is larger than a threshold value, the settling velocity shows repeated short oscillatory bursts separated by long periods of relative quiescence. We propose a model incorporating the interplay of settling-induced flow, viscoelastic stress and, as in M. E. Cates, D. A. Head and A. Ajdari, Phys. Rev. E, 2002, 66, 025202(R) and A. Aradian and M. E. Cates, Phys. Rev. E, 2006, 73, 041508, a slow structural variable for which our experiments offer independent evidence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrostatic self-assembly of colloidal and nanoparticles has attracted a lot of attention in recent years, since it offers the possibility of producing novel crystalline structures that have the potential to be used as advanced materials for photonic and other applications. The stoichiometry of these crystals is not constrained by charge neutrality of the two types of particles due to the presence of counterions, and hence a variety of three-dimensional structures have been observed depending on the relative sizes of the particles and their charge. Here we report structural polymorphism of two-dimensional crystals of oppositely charged linear macroions, namely DNA and self-assembled cylindrical micelles of cationic amphiphiles. Our system differs from those studied earlier in terms of the presence of a strongly binding counterion that competes with DNA to bind to the micelle. The presence of these counterions leads to novel structures of these crystals, such as a square lattice and a root 3 x root 3 superlattice of an underlying hexagonal lattice, determined from a detailed analysis of the small-angle diffraction data. These lower-dimensional equilibrium systems can play an important role in developing a deeper theoretical understanding of the stability of crystals of oppositely charged particles. Further, it should be possible to use the same design principles to fabricate structures on a longer length-scale by an appropriate choice of the two macroions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

NMR spectroscopic separation of double bonded cis- and trans-isomers, that have different molecular shapes but identical mass have been carried out using Diffusion Ordered Spectroscopy (DOSY). The mixtures of fumaric acid and maleic acid, that have similar hydrodynamic radii, have resolved been on the basis of their diffusion coefficients arising due to their different tendencies to associate with micelles or reverse micelles. Sodium dodecyl sulfate (SDS) and Dioctyl sulfosuccinate sodium salt (AOT) have been used as the media to mimic the chromatographic conditions, modify the average mobility and to achieve differential diffusion rates. The best separation of the components has been achieved by Dioctyl sulfosuccinate sodium salt (AOT) in D2O solution. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Planar imidazolium cation based gemini surfactants 16-Im-n-Im-16], 2Br(-) (where n = 2, 3, 4, 5, 6, 8, 10, and 12), exhibit different morphologies and internal packing arrangements by adopting different supramolecular assemblies in aqueous media depending on their number of spacer methylene units (CH2)(n). Detailed measurements of the small-angle neutron-scattering (SANS) cross sections from different imidazolium-based surfactant micelles in aqueous media (D2O) are reported. The SANS data, containing the information of aggregation behavior of such surfactants in the molecular level, have been analyzed on the basis of the Hayter and Penfold model for the macro ion solution to compute the interparticle structure factor S(Q) taking into account the screened Coulomb interactions between the dimeric surfactant micelles. The characteristic changes in the SANS spectra of the dimeric surfactant with n = 4 due to variation of temperature have also been investigated. These data are then compared with the SANS characterization data of the corresponding gemini micelles containing tetrahedral ammonium ion based polar headgroups. The critical micellar concentration of each surfactant micelle (cmc) has been determined using pyrene as an extrinsic fluorescence probe. The variation of cmc as a function of spacer chain length has been explained in terms of conformational variation and progressive looping of the spacer into the micellar interior upon increasing the n values. Small-angle neutron-scattering (SANS) cross sections from different mixed micelles composed of surfactants with ammonium headgroups, 16-A(0), 16-Am-n-Am-16], 2Br(-) (where n = 4), 16-I-0, and 16-Im-n-Im-16], 2Br(-) (where n = 4), in aqueous media (D2O) have also been analyzed. The aggregate composition matches with that predicted from the ideal mixing model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present the selective sensing of multiple transition metal ions in water using a synthetic single probe. The probe is made up of pyrene and pyridine as signaling and interacting moiety, respectively. The sensor showed different responses toward metal ions just by varying the medium of detection. In organic solvent (acetonitrile), the probe showed selective detection of Hg2+ ion. In water, the fluorescence quenching was observed with three metal ions, Cu2+, Hg2+, and Ni2+. Further, just by varying the surface charge on the micellar aggregates, the probe could detect and discriminate the above-mentioned three different toxic metal ions appropriately. In neutral micelles (Brij 58), the probe showed a selective interaction with Hg2+ ion as observed in acetonitrile medium. However, in anionic micellar medium (sodium dodecyl sulfate, SDS), the probe showed changes with both Cu2+ and Ni2+. under UV-vis absorption spectroscopy. The discrimination between these two ions was achieved by recording their emission spectra, where it showed selective quenching with Cu2+.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The two-phase Brust-Schiffrin method (BSM) is used to synthesize highly stable nanoparticles of noble metals. A phase transfer catalyst (PTC) is used to bring in aqueous phase soluble precursors into the organic phase to enable particle synthesis there. Two different mechanisms for phase transfer are advanced in the literature. The first mechanism considers PTC to bring in an aqueous phase soluble precursor by complexing with it. The second mechanism considers the ionic species to be contained in inverse micelles of PTC, with a water core inside. A comprehensive experimental study involving measurement of interfacial tension, viscosity, water content by Karl-Fischer titration, static light scattering, H-1 NMR, and small-angle X-ray scattering is reported in this work to establish that the phase transfer catalyst tetraoctylammonium bromide transfers ions by complexing with them, instead of encapsulating them in inverse micelles. The findings have implications for particle synthesis in two-phase methods such as BSM and their modification to produce more monodispersed particles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

5,6-Bis(benzylideneamino)-2-mercaptopyrimidin-4-ol (SCR7) is a new anti cancer molecule having capability to selectively inhibit non-homologous end joining (NHEJ), one of the DNA double strand break (DSB) repair pathways inside the cells. In spite of the promising potential as an anticancer agent, hydrophobicity of SCR7 decreases its bioavailability. Herein the entrapment of SCR7 in Pluronic copolymer is reported. The size of the aggregates was determined by transmission electron microscopy (TEM) and dynamic light scattering (DLS) which yields an average diameter of 23 nm. SCR7 encapsulated micelles (ES) were also characterized by small-angle neutron scattering (SANS). Evaluation of its biological properties by using a variety of techniques, including Trypan blue, MTT and Live-dead cell assays, reveal that encapsulated SCR7 can induce cytotoxicity in cancer cell lines, being more effective in breast cancer cell line. Encapsulated SCR7 treatment resulted in accumulation of DNA breaks within the cells, resulting in cell cycle arrest at G1 phase and activation of apoptosis. More importantly, we found approximate to 5 fold increase in cell death, when encapsulated SCR7 was used in comparison with SCR7 alone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Local heterogeneity is ubiquitous in natural aqueous systems. It can be caused locally by external biomolecular subsystems like proteins, DNA, micelles and reverse micelles, nanoscopic materials etc., but can also be intrinsic to the thermodynamic nature of the aqueous solution itself (like binary mixtures or at the gas-liquid interface). The altered dynamics of water in the presence of such diverse surfaces has attracted considerable attention in recent years. As these interfaces are quite narrow, only a few molecular layers thick, they are hard to study by conventional methods. The recent development of two dimensional infra-red (2D-IR) spectroscopy allows us to estimate length and time scales of such dynamics fairly accurately. In this work, we present a series of interesting studies employing two dimensional infra-red spectroscopy (2D-IR) to investigate (i) the heterogeneous dynamics of water inside reverse micelles of varying sizes, (ii) supercritical water near the Widom line that is known to exhibit pronounced density fluctuations and also study (iii) the collective and local polarization fluctuation of water molecules in the presence of several different proteins. The spatio-temporal correlation of confined water molecules inside reverse micelles of varying sizes is well captured through the spectral diffusion of corresponding 2D-IR spectra. In the case of supercritical water also, we observe a strong signature of dynamic heterogeneity from the elongated nature of the 2D-IR spectra. In this case the relaxation is ultrafast. We find remarkable agreement between the different tools employed to study the relaxation of density heterogeneity. For aqueous protein solutions, we find that the calculated dielectric constant of the respective systems unanimously shows a noticeable increment compared to that of neat water. However, the `effective' dielectric constant for successive layers shows significant variation, with the layer adjacent to the protein having a much lower value. Relaxation is also slowest at the surface. We find that the dielectric constant achieves the bulk value at distances more than 3 nm from the surface of the protein.