962 resultados para Lumped parameter
Resumo:
The dissertation is based on four articles dealing with recalcitrant lignin water purification. Lignin, a complicated substance and recalcitrant to most treatment technologies, inhibits seriously pulp and paper industry waste management. Therefore, lignin is studied, using WO as a process method for its degradation. A special attention is paid to the improvement in biodegradability and the reduction of lignin content, since they have special importance for any following biological treatment. In most cases wet oxidation is not used as a complete ' mineralization method but as a pre treatment in order to eliminate toxic components and to reduce the high level of organics produced. The combination of wet oxidation with a biological treatment can be a good option due to its effectiveness and its relatively low technology cost. The literature part gives an overview of Advanced Oxidation Processes (AOPs). A hot oxidation process, wet oxidation (WO), is investigated in detail and is the AOP process used in the research. The background and main principles of wet oxidation, its industrial applications, the combination of wet oxidation with other water treatment technologies, principal reactions in WO, and key aspects of modelling and reaction kinetics are presented. There is also given a wood composition and lignin characterization (chemical composition, structure and origin), lignin containing waters, lignin degradation and reuse possibilities, and purification practices for lignin containing waters. The aim of the research was to investigate the effect of the operating conditions of WO, such as temperature, partial pressure of oxygen, pH and initial concentration of wastewater, on the efficiency, and to enhance the process and estimate optimal conditions for WO of recalcitrant lignin waters. Two different waters are studied (a lignin water model solution and debarking water from paper industry) to give as appropriate conditions as possible. Due to the great importance of re using and minimizing the residues of industries, further research is carried out using residual ash of an Estonian power plant as a catalyst in wet oxidation of lignin-containing water. Developing a kinetic model that includes in the prediction such parameters as TOC gives the opportunity to estimate the amount of emerging inorganic substances (degradation rate of waste) and not only the decrease of COD and BOD. The degradation target compound, lignin is included into the model through its COD value (CODligning). Such a kinetic model can be valuable in developing WO treatment processes for lignin containing waters, or other wastewaters containing one or more target compounds. In the first article, wet oxidation of "pure" lignin water was investigated as a model case with the aim of degrading lignin and enhancing water biodegradability. The experiments were performed at various temperatures (110 -190°C), partial oxygen pressures (0.5 -1.5 MPa) and pH (5, 9 and 12). The experiments showed that increasing the temperature notably improved the processes efficiency. 75% lignin reduction was detected at the lowest temperature tested and lignin removal improved to 100% at 190°C. The effect of temperature on the COD removal rate was lower, but clearly detectable. 53% of organics were oxidized at 190°C. The effect of pH occurred mostly on lignin removal. Increasing the pH enhanced the lignin removal efficiency from 60% to nearly 100%. A good biodegradability ratio (over 0.5) was generally achieved. The aim of the second article was to develop a mathematical model for "pure" lignin wet oxidation using lumped characteristics of water (COD, BOD, TOC) and lignin concentration. The model agreed well with the experimental data (R2 = 0.93 at pH 5 and 12) and concentration changes during wet oxidation followed adequately the experimental results. The model also showed correctly the trend of biodegradability (BOD/COD) changes. In the third article, the purpose of the research was to estimate optimal conditions for wet oxidation (WO) of debarking water from the paper industry. The WO experiments were' performed at various temperatures, partial oxygen pressures and pH. The experiments showed that lignin degradation and organics removal are affected remarkably by temperature and pH. 78-97% lignin reduction was detected at different WO conditions. Initial pH 12 caused faster removal of tannins/lignin content; but initial pH 5 was more effective for removal of total organics, represented by COD and TOC. Most of the decrease in organic substances concentrations occurred in the first 60 minutes. The aim of the fourth article was to compare the behaviour of two reaction kinetic models, based on experiments of wet oxidation of industrial debarking water under different conditions. The simpler model took into account only the changes in COD, BOD and TOC; the advanced model was similar to the model used in the second article. Comparing the results of the models, the second model was found to be more suitable for describing the kinetics of wet oxidation of debarking water. The significance of the reactions involved was compared on the basis of the model: for instance, lignin degraded first to other chemically oxidizable compounds rather than directly to biodegradable products. Catalytic wet oxidation of lignin containing waters is briefly presented at the end of the dissertation. Two completely different catalysts were used: a commercial Pt catalyst and waste power plant ash. CWO showed good performance using 1 g/L of residual ash gave lignin removal of 86% and COD removal of 39% at 150°C (a lower temperature and pressure than with WO). It was noted that the ash catalyst caused a remarkable removal rate for lignin degradation already during the pre heating for `zero' time, 58% of lignin was degraded. In general, wet oxidation is not recommended for use as a complete mineralization method, but as a pre treatment phase to eliminate toxic or difficultly biodegradable components and to reduce the high level of organics. Biological treatment is an appropriate post treatment method since easily biodegradable organic matter remains after the WO process. The combination of wet oxidation with subsequent biological treatment can be an effective option for the treatment of lignin containing waters.
Resumo:
This paper presents the design for a graphical parameter editor for Testing and Test Control Notation 3 (TTCN-3) test suites. This work was done in the context of OpenTTCN IDE, a TTCN-3 development environment built on top of the Eclipse platform. The design presented relies on an additional parameter editing tab added to the launch configurations for test campaigns. This parameter editing tab shows the list of editable parameters and allows opening editing components for the different parameters. Each TTCN-3 primitive type will have a specific editing component providing tools to ease modification of values of that type.
Resumo:
Parameter estimation still remains a challenge in many important applications. There is a need to develop methods that utilize achievements in modern computational systems with growing capabilities. Owing to this fact different kinds of Evolutionary Algorithms are becoming an especially perspective field of research. The main aim of this thesis is to explore theoretical aspects of a specific type of Evolutionary Algorithms class, the Differential Evolution (DE) method, and implement this algorithm as codes capable to solve a large range of problems. Matlab, a numerical computing environment provided by MathWorks inc., has been utilized for this purpose. Our implementation empirically demonstrates the benefits of a stochastic optimizers with respect to deterministic optimizers in case of stochastic and chaotic problems. Furthermore, the advanced features of Differential Evolution are discussed as well as taken into account in the Matlab realization. Test "toycase" examples are presented in order to show advantages and disadvantages caused by additional aspects involved in extensions of the basic algorithm. Another aim of this paper is to apply the DE approach to the parameter estimation problem of the system exhibiting chaotic behavior, where the well-known Lorenz system with specific set of parameter values is taken as an example. Finally, the DE approach for estimation of chaotic dynamics is compared to the Ensemble prediction and parameter estimation system (EPPES) approach which was recently proposed as a possible solution for similar problems.
Resumo:
To obtain the desirable accuracy of a robot, there are two techniques available. The first option would be to make the robot match the nominal mathematic model. In other words, the manufacturing and assembling tolerances of every part would be extremely tight so that all of the various parameters would match the “design” or “nominal” values as closely as possible. This method can satisfy most of the accuracy requirements, but the cost would increase dramatically as the accuracy requirement increases. Alternatively, a more cost-effective solution is to build a manipulator with relaxed manufacturing and assembling tolerances. By modifying the mathematical model in the controller, the actual errors of the robot can be compensated. This is the essence of robot calibration. Simply put, robot calibration is the process of defining an appropriate error model and then identifying the various parameter errors that make the error model match the robot as closely as possible. This work focuses on kinematic calibration of a 10 degree-of-freedom (DOF) redundant serial-parallel hybrid robot. The robot consists of a 4-DOF serial mechanism and a 6-DOF hexapod parallel manipulator. The redundant 4-DOF serial structure is used to enlarge workspace and the 6-DOF hexapod manipulator is used to provide high load capabilities and stiffness for the whole structure. The main objective of the study is to develop a suitable calibration method to improve the accuracy of the redundant serial-parallel hybrid robot. To this end, a Denavit–Hartenberg (DH) hybrid error model and a Product-of-Exponential (POE) error model are developed for error modeling of the proposed robot. Furthermore, two kinds of global optimization methods, i.e. the differential-evolution (DE) algorithm and the Markov Chain Monte Carlo (MCMC) algorithm, are employed to identify the parameter errors of the derived error model. A measurement method based on a 3-2-1 wire-based pose estimation system is proposed and implemented in a Solidworks environment to simulate the real experimental validations. Numerical simulations and Solidworks prototype-model validations are carried out on the hybrid robot to verify the effectiveness, accuracy and robustness of the calibration algorithms.
Resumo:
This study aimed to evaluate the interference of tuberculin test on the gamma-interferon (INFg) assay, to estimate the sensitivity and specificity of the INFg assay in Brazilian conditions, and to simulate multiple testing using the comparative tuberculin test and the INFg assay. Three hundred-fifty cattle from two TB-free and two TB-infected herds were submitted to the comparative tuberculin test and the INFg assay. The comparative tuberculin test was performed using avian and bovine PPD. The INFg assay was performed by the BovigamTM kit (CSL Veterinary, Australia), according to the manufacturer's specifications. Sensitivity and specificity of the INFg assay were assessed by a Bayesian latent class model. These diagnostic parameters were also estimate for multiple testing. The results of INFg assay on D0 and D3 after the comparative tuberculin test were compared by the McNemar's test and kappa statistics. Results of mean optical density from INFg assay on both days were similar. Sensitivity and specificity of the INFg assay showed results varying (95% confidence intervals) from 72 to 100% and 74 to 100% respectively. Sensitivity of parallel testing was over 97.5%, while specificity of serial testing was over 99.7%. The INFg assay proved to be a very useful diagnostic method.
Resumo:
In this thesis the design of bandpass filters tunable at 400 MHz – 800 MHz was under research. Microwave filters are vital components which provide frequency selectivity in wide variety of electronic systems operating at high frequencies. Due to the occurrence of multi-frequency bands communication and diverse applications of wireless devices, requirement of tunable filters exists. The one of potential implementation of frequency-agile filters is frontends and spectrum sensors in Cognitive Radio (CR). The principle of CR is to detect and operate at a particular available spectrum without interfering with the primary user’s signals. This new method allows improving the efficiency of utilizing allocated spectrum such as TV band (400 MHz – 800 MHz). The focus of this work is development of sufficiently compact, low cost tunable filters with quite narrow bandwidth using currently available lumped-element components and PCB board technology. Filter design, different topologies and methods of tuning of bandpass filters are considered in this work. As a result, three types of topologies of bandpass filter were simulated and realised. They use digitally tunable capacitors (DTCs) for adjusting central frequency at TV "white space" spectrum. Measurements revealed that schematics presented in this work have proper output response and filters are successfully tuned by DTCs.
Resumo:
The objective of this work was to optimize the parameter setup for GTAW of aluminum using an AC rectangular wave output and continuous feeding. A series of welds was carried-out in an industrial joint, with variation of the negative and positive current amplitude, the negative and positive duration time, the travel speed and the feeding speed. Another series was carried out to investigate the isolate effect of the negative duration time and travel speed. Bead geometry aspects were assessed, such as reinforcement, penetration, incomplete fusion and joint wall bridging. The results showed that currents at both polarities are remarkably more significant than the respective duration times. It was also shown that there is a straight relationship between welding speed and feeding speed and this relationship must be followed for obtaining sound beads. A very short positive duration time is enough for arc stability achievement and when the negative duration time is longer than 5 ms its effect on geometry appears. The possibility of optimizing the parameter selection, despite the high inter-correlation amongst them, was demonstrate through a computer program. An approach to reduce the number of variables in this process is also presented.
Resumo:
State-of-the-art predictions of atmospheric states rely on large-scale numerical models of chaotic systems. This dissertation studies numerical methods for state and parameter estimation in such systems. The motivation comes from weather and climate models and a methodological perspective is adopted. The dissertation comprises three sections: state estimation, parameter estimation and chemical data assimilation with real atmospheric satellite data. In the state estimation part of this dissertation, a new filtering technique based on a combination of ensemble and variational Kalman filtering approaches, is presented, experimented and discussed. This new filter is developed for large-scale Kalman filtering applications. In the parameter estimation part, three different techniques for parameter estimation in chaotic systems are considered. The methods are studied using the parameterized Lorenz 95 system, which is a benchmark model for data assimilation. In addition, a dilemma related to the uniqueness of weather and climate model closure parameters is discussed. In the data-oriented part of this dissertation, data from the Global Ozone Monitoring by Occultation of Stars (GOMOS) satellite instrument are considered and an alternative algorithm to retrieve atmospheric parameters from the measurements is presented. The validation study presents first global comparisons between two unique satellite-borne datasets of vertical profiles of nitrogen trioxide (NO3), retrieved using GOMOS and Stratospheric Aerosol and Gas Experiment III (SAGE III) satellite instruments. The GOMOS NO3 observations are also considered in a chemical state estimation study in order to retrieve stratospheric temperature profiles. The main result of this dissertation is the consideration of likelihood calculations via Kalman filtering outputs. The concept has previously been used together with stochastic differential equations and in time series analysis. In this work, the concept is applied to chaotic dynamical systems and used together with Markov chain Monte Carlo (MCMC) methods for statistical analysis. In particular, this methodology is advocated for use in numerical weather prediction (NWP) and climate model applications. In addition, the concept is shown to be useful in estimating the filter-specific parameters related, e.g., to model error covariance matrix parameters.
Resumo:
The power rating of wind turbines is constantly increasing; however, keeping the voltage rating at the low-voltage level results in high kilo-ampere currents. An alternative for increasing the power levels without raising the voltage level is provided by multiphase machines. Multiphase machines are used for instance in ship propulsion systems, aerospace applications, electric vehicles, and in other high-power applications including wind energy conversion systems. A machine model in an appropriate reference frame is required in order to design an efficient control for the electric drive. Modeling of multiphase machines poses a challenge because of the mutual couplings between the phases. Mutual couplings degrade the drive performance unless they are properly considered. In certain multiphase machines there is also a problem of high current harmonics, which are easily generated because of the small current path impedance of the harmonic components. However, multiphase machines provide special characteristics compared with the three-phase counterparts: Multiphase machines have a better fault tolerance, and are thus more robust. In addition, the controlled power can be divided among more inverter legs by increasing the number of phases. Moreover, the torque pulsation can be decreased and the harmonic frequency of the torque ripple increased by an appropriate multiphase configuration. By increasing the number of phases it is also possible to obtain more torque per RMS ampere for the same volume, and thus, increase the power density. In this doctoral thesis, a decoupled d–q model of double-star permanent-magnet (PM) synchronous machines is derived based on the inductance matrix diagonalization. The double-star machine is a special type of multiphase machines. Its armature consists of two three-phase winding sets, which are commonly displaced by 30 electrical degrees. In this study, the displacement angle between the sets is considered a parameter. The diagonalization of the inductance matrix results in a simplified model structure, in which the mutual couplings between the reference frames are eliminated. Moreover, the current harmonics are mapped into a reference frame, in which they can be easily controlled. The work also presents methods to determine the machine inductances by a finite-element analysis and by voltage-source inverters on-site. The derived model is validated by experimental results obtained with an example double-star interior PM (IPM) synchronous machine having the sets displaced by 30 electrical degrees. The derived transformation, and consequently, the decoupled d–q machine model, are shown to model the behavior of an actual machine with an acceptable accuracy. Thus, the proposed model is suitable to be used for the model-based control design of electric drives consisting of double-star IPM synchronous machines.
Resumo:
We present a critical analysis of the generalized use of the "impact factor". By means of the Kruskal-Wallis test, it was shown that it is not possible to compare distinct disciplines using the impact factor without adjustments. After assigning the median journal the value of one (1.000), the impact factor value for each journal was calculated by the rule of three. The adjusted values were homogeneous, thus permitting comparison among distinct disciplines.
Resumo:
Time series analysis can be categorized into three different approaches: classical, Box-Jenkins, and State space. Classical approach makes a basement for the analysis and Box-Jenkins approach is an improvement of the classical approach and deals with stationary time series. State space approach allows time variant factors and covers up a broader area of time series analysis. This thesis focuses on parameter identifiablity of different parameter estimation methods such as LSQ, Yule-Walker, MLE which are used in the above time series analysis approaches. Also the Kalman filter method and smoothing techniques are integrated with the state space approach and MLE method to estimate parameters allowing them to change over time. Parameter estimation is carried out by repeating estimation and integrating with MCMC and inspect how well different estimation methods can identify the optimal model parameters. Identification is performed in probabilistic and general senses and compare the results in order to study and represent identifiability more informative way.
Resumo:
The growing population on earth along with diminishing fossil deposits and the climate change debate calls out for a better utilization of renewable, bio-based materials. In a biorefinery perspective, the renewable biomass is converted into many different products such as fuels, chemicals, and materials, quite similar to the petroleum refinery industry. Since forests cover about one third of the land surface on earth, ligno-cellulosic biomass is the most abundant renewable resource available. The natural first step in a biorefinery is separation and isolation of the different compounds the biomass is comprised of. The major components in wood are cellulose, hemicellulose, and lignin, all of which can be made into various end-products. Today, focus normally lies on utilizing only one component, e.g., the cellulose in the Kraft pulping process. It would be highly desirable to utilize all the different compounds, both from an economical and environmental point of view. The separation process should therefore be optimized. Hemicelluloses can partly be extracted with hot-water prior to pulping. Depending in the severity of the extraction, the hemicelluloses are degraded to various degrees. In order to be able to choose from a variety of different end-products, the hemicelluloses should be as intact as possible after the extraction. The main focus of this work has been on preserving the hemicellulose molar mass throughout the extraction at a high yield by actively controlling the extraction pH at the high temperatures used. Since it has not been possible to measure pH during an extraction due to the high temperatures, the extraction pH has remained a “black box”. Therefore, a high-temperature in-line pH measuring system was developed, validated, and tested for hot-water wood extractions. One crucial step in the measurements is calibration, therefore extensive efforts was put on developing a reliable calibration procedure. Initial extractions with wood showed that the actual extraction pH was ~0.35 pH units higher than previously believed. The measuring system was also equipped with a controller connected to a pump. With this addition it was possible to control the extraction to any desired pH set point. When the pH dropped below the set point, the controller started pumping in alkali and by that the desired set point was maintained very accurately. Analyses of the extracted hemicelluloses showed that less hemicelluloses were extracted at higher pH but with a higher molar-mass. Monomer formation could, at a certain pH level, be completely inhibited. Increasing the temperature, but maintaining a specific pH set point, would speed up the extraction without degrading the molar-mass of the hemicelluloses and thereby intensifying the extraction. The diffusion of the dissolved hemicelluloses from the wood particle is a major part of the extraction process. Therefore, a particle size study ranging from 0.5 mm wood particles to industrial size wood chips was conducted to investigate the internal mass transfer of the hemicelluloses. Unsurprisingly, it showed that hemicelluloses were extracted faster from smaller wood particles than larger although it did not seem to have a substantial effect on the average molar mass of the extracted hemicelluloses. However, smaller particle sizes require more energy to manufacture and thus increases the economic cost. Since bark comprises 10 – 15 % of a tree, it is important to also consider it in a biorefinery concept. Spruce inner and outer bark was hot-water extracted separately to investigate the possibility to isolate the bark hemicelluloses. It was showed that the bark hemicelluloses comprised mostly of pectic material and differed considerably from the wood hemicelluloses. The bark hemicelluloses, or pectins, could be extracted at lower temperatures than the wood hemicelluloses. A chemical characterization, done separately on inner and outer bark, showed that inner bark contained over 10 % stilbene glucosides that could be extracted already at 100 °C with aqueous acetone.
Resumo:
To study the dendritic morphology of retinal ganglion cells in wild-type mice we intracellularly injected these cells with Lucifer yellow in an in vitro preparation of the retina. Subsequently, quantified values of dendritic thickness, number of branching points and level of stratification of 73 Lucifer yellow-filled ganglion cells were analyzed by statistical methods, resulting in a classification into 9 groups. The variables dendritic thickness, number of branching points per cell and level of stratification were independent of each other. Number of branching points and level of stratification were independent of eccentricity, whereas dendritic thickness was positively dependent (r = 0.37) on it. The frequency distribution of dendritic thickness tended to be multimodal, indicating the presence of at least two cell populations composed of neurons with dendritic diameters either smaller or larger than 1.8 µm ("thin" or "thick" dendrites, respectively). Three cells (4.5%) were bistratified, having thick dendrites, and the others (95.5%) were monostratified. Using k-means cluster analysis, monostratified cells with either thin or thick dendrites were further subdivided according to level of stratification and number of branching points: cells with thin dendrites were divided into 2 groups with outer stratification (0-40%) and 2 groups with inner (50-100%) stratification, whereas cells with thick dendrites were divided into one group with outer and 3 groups with inner stratification. We postulate, that one group of cells with thin dendrites resembles cat ß-cells, whereas one group of cells with thick dendrites includes cells that resemble cat a-cells.
Resumo:
Since its discovery, chaos has been a very interesting and challenging topic of research. Many great minds spent their entire lives trying to give some rules to it. Nowadays, thanks to the research of last century and the advent of computers, it is possible to predict chaotic phenomena of nature for a certain limited amount of time. The aim of this study is to present a recently discovered method for the parameter estimation of the chaotic dynamical system models via the correlation integral likelihood, and give some hints for a more optimized use of it, together with a possible application to the industry. The main part of our study concerned two chaotic attractors whose general behaviour is diff erent, in order to capture eventual di fferences in the results. In the various simulations that we performed, the initial conditions have been changed in a quite exhaustive way. The results obtained show that, under certain conditions, this method works very well in all the case. In particular, it came out that the most important aspect is to be very careful while creating the training set and the empirical likelihood, since a lack of information in this part of the procedure leads to low quality results.