969 resultados para Loops parallelization


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interlocked feedback loops may represent a common feature among the regulatory systems controlling circadian rhythms. The Neurospora circadian feedback loops involve white collar-1 (wc-1), wc-2, and frequency (frq) genes. We show that WC-1 and WC-2 proteins activate the transcription of frq gene, whereas FRQ protein plays dual roles: repressing its own transcription, probably by interacting with the WC-1/WC-2 complex, and activating the expression of both WC proteins. Thus, they form two interlocked feedback loops: one negative and one positive. We establish the physiological significance of the interlocked positive feedback loops by showing that the levels of WC-1 and WC-2 determine the robustness and stability of the clock. Our data demonstrate that with WC-1 being the limiting factor in the WC-1/WC-2 complex, the greater the levels of WC-1 and WC-2, the higher the level of the FRQ oscillation and the more robust the overt rhythms. Our data also show that, despite considerable changes in the levels of WC-1, WC-2, and FRQ, the period of the clock has been limited to a small range, suggesting that the interlocked circadian feedback loops are also important for determining the circadian period length of the clock.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein-protein interactions typically are characterized by highly specific interfaces that mediate binding with precisely tuned affinities. Binding of the Escherichia coli cochaperonin GroES to chaperonin GroEL is mediated, at least in part, by a mobile polypeptide loop in GroES that becomes immobilized in the GroEL/GroES/nucleotide complex. The bacteriophage T4 cochaperonin Gp31 possesses a similar highly flexible polypeptide loop in a region of the protein that shows low, but significant, amino acid similarity with GroES and other cochaperonins. When bound to GroEL, a synthetic peptide representing the mobile loop of either GroES or Gp31 adopts a characteristic bulged hairpin conformation as determined by transferred nuclear Overhauser effects in NMR spectra. Thermodynamic considerations suggest that flexible disorder in the cochaperonin mobile loops moderates their affinity for GroEL to facilitate cycles of chaperonin-mediated protein folding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recognition of peptides bound to class I major histocompatibility complex (MHC) molecules by specific receptors on T cells regulates the development and activity of the cellular immune system. We have designed and synthesized de novo cyclic peptides that incorporate PEG in the ring structure for binding to class I MHC molecules. The large PEG loops are positioned to extend out of the peptide binding site, thus creating steric effects aimed at preventing the recognition of class I MHC complexes by T-cell receptors. Peptides were synthesized and cyclized on polymer support using high molecular weight symmetrical PEG dicarboxylic acids to link the side chains of lysine residues substituted at positions 4 and 8 in the sequence of the HLA-A2-restricted human T-lymphotrophic virus type I Tax peptide. Cyclic peptides promoted the in vitro folding and assembly of HLA-A2 complexes. Thermal denaturation studies using circular dichroism spectroscopy showed that these complexes are as stable as complexes formed with antigenic peptides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A characteristic feature of all myosins is the presence of two sequences which despite considerable variations in length and composition can be aligned with loops 1 (residues 204-216) and 2 (residues 627-646) in the chicken myosin-head heavy chain sequence. Recently, an intriguing hypothesis has been put forth suggesting that diverse performances of myosin motors are achieved through variations in the sequences of loops 1 and 2 [Spudich, J. (1994) Nature (London) 372, 515-518]. Here, we report on the study of the effects of tryptic digestion of these loops on the motor and enzymatic functions of myosin. Tryptic digestions of myosin, which produced heavy meromyosin (HMM) with different percentages of molecules cleaved at both loop 1 and loop 2, resulted in the consistent decrease in the sliding velocity of actin filaments over HMM in the in vitro motility assays, did not affect the Vmax, and increased the Km values for actin-activated ATPase of HMM. Selective cleavage of loop 2 on HMM decreased its affinity for actin but did not change the sliding velocity of actin in the in vitro motility assays. The cleavage of loop 1 and HMM decreased the mean sliding velocity of actin in such assays by almost 50% but did not alter its affinity for HMM. To test for a possible kinetic determinant of the change in motility, 1-N6-ethenoadenosine diphosphate (epsilon-ADP) release from cleaved and uncleaved myosin subfragment 1 (S1) was examined. Tryptic digestion of loop 1 slightly accelerated the release of epsilon-ADP from S1 but did not affect the rate of epsilon-ADP release from acto-S1 complex. Overall, the results of this work support the hypothesis that loop 1 can modulate the motor function of myosin and suggest that such modulation involves a mechanism other than regulation of ADP release from myosin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA conformational changes are essential for the assembly of multiprotein complexes that contact several DNA sequence elements. An approach based on atomic force microscopy was chosen to visualize specific protein-DNA interactions occurring on eukaryotic class II nuclear gene promoters. Here we report that binding of the transcription regulatory protein Jun to linearized plasmid DNA containing the consensus AP-1 binding site upstream of a class II gene promoter leads to bending of the DNA template. This binding of Jun was found to be essential for the formation of preinitiation complexes (PICs). The cooperative binding of Jun and PIC led to looping of DNA at the protein binding sites. These loops were not seen in the absence of either PICs, Jun, or the AP-1 binding site, suggesting a direct interaction between DNA-bound Jun homodimers and proteins bound to the core promoter. This direct visualization of functional transcriptional complexes confirms the theoretical predictions for the mode of gene regulation by trans-activating proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A major chemical challenge is the structural mimicry of discontinuous protein surfaces brought into close proximity through polypeptide folding. We report the design, synthesis, and solution structure of a highly functionalized saddle-shaped macrocyclic scaffold, constrained by oxazoles and thiazoles,upporting two short peptide loops projecting orthogonally from the same face of the scaffold. This structural mimetic of two interhelical loops of cytochrome b(562) illustrates a promising approach to structurally mimicking discontinuous loops of proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tetrapeptide analogue H-[Glu-Ser-Lys(Thz)]-OH, containing a turn-inducing thiazole constraint, was used as a template to produce a 21-membered structurally characterized loop by linking Glu and Lys side chains with a Val-Ile dipeptide. This template was oligomerized in one pot to a library (cyclo-[1](n), n = 2-10) of giant symmetrical macrocycles (up to 120-membered rings), fused to 2-10 appended loops that were carried intact through multiple oligomerization (chain extension) and cyclization (chain terminating) reactions of the template. A three-dimensional solution structure for cyclo-[1](3) shows all three appended loops projecting from the same face of the macrocycle. This is a promising approach to separating pepticle motifs over large distances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diversity of the networks (wired/wireless) prefers a TCP solution robust across a wide range of networks rather than fine-tuned for a particular one at the cost of another. TCP parallelization uses multiple virtual TCP connections to transfer data for an application process and opens a way to improve TCP performance across a wide range of environments - high bandwidth-delay product (BDP), wireless as well as conventional networks. In particular, it can significantly benefit the emerging high-speed wireless networks. Despite its potential to work well over a wide range of networks, it is not fully understood how TCP parallelization performs when experiencing various packet losses in the heterogeneous environment. This paper examines the current TCP parallelization related methods under various packet losses and shows how to improve the performance of TCP parallelization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein-protein interactions are central to all biological processes. The creation of small molecules that can structurally mimic the fundamental units of protein architecture (helices, strands, turns, and their combinations) could potentially be used to reproduce important bioactive protein surfaces and interfere in biological processes. Although this field is still in relative infancy, substantial progress is being made in creating small molecules that can mimic these individual secondary structural elements of proteins. However the generation of compounds that can reproduce larger protein surfaces, composed of multiple structural elements of proteins, has proven to be much more challenging. This presentation will describe some densely functionalised small molecules that do constrain multiple peptide motifs in defined structures such as loop bundles, helix bundles, strand and sheet bundles. An example of a helix bundle that undergoes conformational changes to a beta sheet bundle and aggregates into multi-micron length peptide nanofibre 'rope' will be described.