952 resultados para Logical Decision Function
Resumo:
The social landscape is filled with an intricate web of species-specific desired objects and course of actions. Humans are highly social animals and, as they navigate this landscape, they need to produce adapted decision-making behaviour. Traditionally social and non-social neural mechanisms affecting choice have been investigated using different approaches. Recently, in an effort to unite these findings, two main theories have been proposed to explain how the brain might encode social and non-social motivational decision-making: the extended common currency and the social valuation specific schema (Ruff & Fehr 2014). One way to test these theories is to directly compare neural activity related to social and non-social decision outcomes within the same experimental setting. Here we address this issue by focusing on the neural substrates of social and non-social forms of uncertainty. Using functional magnetic resonance imaging (fMRI) we directly compared the neural representations of reward and risk prediction and errors (RePE and RiPE) in social and non- social situations using gambling games. We used a trust betting game to vary uncertainty along a social dimension (trustworthiness), and a card game (Preuschoff et al. 2006) to vary uncertainty along a non-social dimension (pure risk). The trust game was designed to maintain the same structure of the card game. In a first study, we exposed a divide between subcortical and cortical regions when comparing the way these regions process social and non-social forms of uncertainty during outcome anticipation. Activity in subcortical regions reflected social and non-social RePE, while activity in cortical regions correlated with social RePE and non-social RiPE. The second study focused on outcome delivery and integrated the concept of RiPE in non-social settings with that of fairness and monetary utility maximisation in social settings. In particular these results corroborate recent models of anterior insula function (Singer et al. 2009; Seth 2013), and expose a possible neural mechanism that weights fairness and uncertainty but not monetary utility. The third study focused on functionally defined regions of the early visual cortex (V1) showing how activity in these areas, traditionally considered only visual, might reflect motivational prediction errors in addition to known perceptual prediction mechanisms (den Ouden et al 2012). On the whole, while our results do not support unilaterally one or the other theory modeling the underlying neural dynamics of social and non-social forms of decision making, they provide a working framework where both general mechanisms might coexist.
Resumo:
The processing of spatial and mnemonic information is believed to depend on hippocampal theta oscillations (5–12 Hz). However, in rats both the power and the frequency of the theta rhythm are modulated by locomotor activity, which is a major confounding factor when estimating its cognitive correlates. Previous studies have suggested that hippocampal theta oscillations support decision-making processes. In this study, we investigated to what extent spatial decision making modulates hippocampal theta oscillations when controlling for variations in locomotion speed. We recorded local field potentials from the CA1 region of rats while animals had to choose one arm to enter for reward (goal) in a four-arm radial maze. We observed prominent theta oscillations during the decision-making period of the task, which occurred in the center of the maze before animals deliberately ran through an arm toward goal location. In speed-controlled analyses, theta power and frequency were higher during the decision period when compared to either an intertrial delay period (also at the maze center), or to the period of running toward goal location. In addition, theta activity was higher during decision periods preceding correct choices than during decision periods preceding incorrect choices. Altogether, our data support a cognitive function for the hippocampal theta rhythm in spatial decision making
Resumo:
Background: Financial abuse of elders is an under acknowledged problem and professionals' judgements contribute to both the prevalence of abuse and the ability to prevent and intervene. In the absence of a definitive "gold standard" for the judgement, it is desirable to try and bring novice professionals' judgemental risk thresholds to the level of competent professionals as quickly and effectively as possible. This study aimed to test if a training intervention was able to bring novices' risk thresholds for financial abuse in line with expert opinion. Methods: A signal detection analysis, within a randomised controlled trial of an educational intervention, was undertaken to examine the effect on the ability of novices to efficiently detect financial abuse. Novices (n = 154) and experts (n = 33) judged "certainty of risk" across 43 scenarios; whether a scenario constituted a case of financial abuse or not was a function of expert opinion. Novices (n = 154) were randomised to receive either an on-line educational intervention to improve financial abuse detection (n = 78) or a control group (no on-line educational intervention, n = 76). Both groups examined 28 scenarios of abuse (11 "signal" scenarios of risk and 17 "noise" scenarios of no risk). After the intervention group had received the on-line training, both groups then examined 15 further scenarios (5 "signal" and 10 "noise" scenarios). Results: Experts were more certain than the novices, pre (Mean 70.61 vs. 58.04) and post intervention (Mean 70.84 vs. 63.04); and more consistent. The intervention group (mean 64.64) were more certain of abuse post-intervention than the control group (mean 61.41, p = 0.02). Signal detection analysis of sensitivity (Á) and bias (C) revealed that this was due to the intervention shifting the novices' tendency towards saying "at risk" (C post intervention -.34) and away from their pre intervention levels of bias (C-.12). Receiver operating curves revealed more efficient judgments in the intervention group. Conclusion: An educational intervention can improve judgements of financial abuse amongst novice professionals.
Resumo:
Fleck and Johnson (Int. J. Mech. Sci. 29 (1987) 507) and Fleck et al. (Proc. Inst. Mech. Eng. 206 (1992) 119) have developed foil rolling models which allow for large deformations in the roll profile, including the possibility that the rolls flatten completely. However, these models require computationally expensive iterative solution techniques. A new approach to the approximate solution of the Fleck et al. (1992) Influence Function Model has been developed using both analytic and approximation techniques. The numerical difficulties arising from solving an integral equation in the flattened region have been reduced by applying an Inverse Hilbert Transform to get an analytic expression for the pressure. The method described in this paper is applicable to cases where there is or there is not a flat region.
Resumo:
A new method for estimating the time to colonization of Methicillin-resistant Staphylococcus Aureus (MRSA) patients is developed in this paper. The time to colonization of MRSA is modelled using a Bayesian smoothing approach for the hazard function. There are two prior models discussed in this paper: the first difference prior and the second difference prior. The second difference prior model gives smoother estimates of the hazard functions and, when applied to data from an intensive care unit (ICU), clearly shows increasing hazard up to day 13, then a decreasing hazard. The results clearly demonstrate that the hazard is not constant and provide a useful quantification of the effect of length of stay on the risk of MRSA colonization which provides useful insight.