954 resultados para Localized surface plasmon resonance (LSPR)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silver nanoprisms were transformed into nanodecahedra through photoinduction of ultraviolet (UV) light in the presence of titanium dioxide (TiO2) quantum dots (QDs). Subsequently, the silver nanodecahedra were reconverted to silver nanoprisms under sodium lamp if there was sufficient citrate in the reaction system. The localized surface plasmon resonance (LSPR) optical properties of silver nanoparticles were tuned during photoinduced shape conversion. The photocatalytic activity of TiO2 QDs assisted the conversion of prisms to decahedra upon UV light irradiation. Nevertheless, the presence of TiO2 did not inhibit the photoinduced reconversion from decahedra to prisms by sodium light. It was demonstrated that citrate was indispensable in the photoinduction process. In addition, oxygen in solution played a vital role in the reversible shape conversion of silver nanoparticles. Moreover, simulated sunlight can convert silver nanoprisms to nanodecahedra instead of UV light with assistance of TiO2 QDs, which would promote the photoinduced reaction of silver nanoparticles based on a natural light source.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The monitoring of lead (II) ions (Pb(2+)) in water is essential for both human health and the environment. Herein, a simple yet innovative biosensor for Pb(2+) detection is presented. The sensor is developed by the self-assembly of gold nanoparticles (GNPs) core-satellite structure using naturally occurring tripeptide glutathione (GSH) as linker. The addition of Pb(2+) caused a red-to-blue color change and the localized surface plasmon resonance (LSPR) band was shifted to ca. 650nm. The limit of detection (LOD) is found to be 47.6nM (9.9ppb) by UV-vis spectroscopy with high selectivity against other heavy metals. This method offers a new strategy for heavy metal detection using functionalized GNPs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple in-situ synthesis route for gold nanoparticles (NPs) was developed to realize multifunctions for silk fabrics. The gold NPs were prepared in a heated solution containing white silk fabric samples. The silk fabrics were colored red and brown by the gold NPs because of their localized surface plasmon resonance (LSPR) property. Gold nanospheres on silk were obtained at a low gold content, and gold nanoplates were synthesized as the gold content increased. The silk fabrics treated with gold NPs showed good light fastness. Moreover, the gold NPs endowed silk fabrics with strong antibacterial activity, excellent UV protection property and enhanced thermal conductivity. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optical characteristics of tellurite glasses containing silver nanoparticles (NPs) and the influence on the emission spectrum of Er 3+ ions were studied. The transitions 4f ↔ 4f from erbium ions, mainly the 4I13/2 → 4I15/2 transition that involve upconversion energy process, have a strongly dependence with the chemical structure of the rare earth ion. In the present work, silver nanparticles (NPs) embedded in the host vitreous material, show a significant enhance (or quenching) on the erbium fluorescence due the long-range electromagnetic interaction between the plasmon surface energy of the Ag NPs (Localized Surface Plasmon Resonance -LSPR) and the Er3+ ions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemical behavior of polystyrene modified with gold nanoparticle (Au NPs) was investigated in terms of pH-responsive polymer brush. A pH-responsive of modified polymer brush from tethered polystyrene was prepared and used for selective gating transport of anions andcations across the thin-film. An ITO-coated glass electrode was used as substrate and applied to study the switchable permeability of the polymer brush triggered by changes in pH of the aqueous environment. The pH-sensitive behavior of the polymer brush interface has been demonstrated by means of cyclic voltammetry (CV) and Localized Surface Plasmon Resonance (LSPR). CV experiments showed at ph values of 4 and 8 induces swelling and shrinking of the grafted polymer brushes, respectively, and this behavior is fast and reversible. LSPR measurements showed a blue shift of 33 nm in the surface resonance band changes by local pH. The paper brings an easy methodology to fabrication a variety of nanosensors based on the polymer brushes-nanoparticle assemblies. © 2013 by ESG.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, a sensor was built up with smart material based on polymer brush and gold nanoparticles. The modified electrode functionalized with polyacrylic acid (PAA) tethered to indium tin oxide (ITO) and covered with gold nanoparticle (ITO/PAA/Au) demonstrated switchable interfacial properties discriminating different pHs. The switchable electrochemical and plasmonic process was characterized by cyclic voltammetry (CV), electrochemistry impedance spectroscopy (EIS), and localized surface plasmon resonance (LSPR).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research has included the efforts in designing, assembling and structurally and functionally characterizing supramolecular biofunctional architectures for optical biosensing applications. In the first part of the study, a class of interfaces based on the biotin-NeutrAvidin binding matrix for the quantitative control of enzyme surface coverage and activity was developed. Genetically modified ß-lactamase was chosen as a model enzyme and attached to five different types of NeutrAvidin-functionalized chip surfaces through a biotinylated spacer. All matrices are suitable for achieving a controlled enzyme surface density. Data obtained by SPR are in excellent agreement with those derived from optical waveguide measurements. Among the various protein-binding strategies investigated in this study, it was found that stiffness and order between alkanethiol-based SAMs and PEGylated surfaces are very important. Matrix D based on a Nb2O5 coating showed a satisfactory regeneration possibility. The surface-immobilized enzymes were found to be stable and sufficiently active enough for a catalytic activity assay. Many factors, such as the steric crowding effect of surface-attached enzymes, the electrostatic interaction between the negatively charged substrate (Nitrocefin) and the polycationic PLL-g-PEG/PEG-Biotin polymer, mass transport effect, and enzyme orientation, are shown to influence the kinetic parameters of catalytic analysis. Furthermore, a home-built Surface Plasmon Resonance Spectrometer of SPR and a commercial miniature Fiber Optic Absorbance Spectrometer (FOAS), served as a combination set-up for affinity and catalytic biosensor, respectively. The parallel measurements offer the opportunity of on-line activity detection of surface attached enzymes. The immobilized enzyme does not have to be in contact with the catalytic biosensor. The SPR chip can easily be cleaned and used for recycling. Additionally, with regard to the application of FOAS, the integrated SPR technique allows for the quantitative control of the surface density of the enzyme, which is highly relevant for the enzymatic activity. Finally, the miniaturized portable FOAS devices can easily be combined as an add-on device with many other in situ interfacial detection techniques, such as optical waveguide lightmode spectroscopy (OWLS), the quartz crystal microbalance (QCM) measurements, or impedance spectroscopy (IS). Surface plasmon field-enhanced fluorescence spectroscopy (SPFS) allows for an absolute determination of intrinsic rate constants describing the true parameters that control interfacial hybridization. Thus it also allows for a study of the difference of the surface coupling influences between OMCVD gold particles and planar metal films presented in the second part. The multilayer growth process was found to proceed similarly to the way it occurs on planar metal substrates. In contrast to planar bulk metal surfaces, metal colloids exhibit a narrow UV-vis absorption band. This absorption band is observed if the incident photon frequency is resonant with the collective oscillation of the conduction electrons and is known as the localized surface plasmon resonance (LSPR). LSPR excitation results in extremely large molar extinction coefficients, which are due to a combination of both absorption and scattering. When considering metal-enhanced fluorescence we expect the absorption to cause quenching and the scattering to cause enhancement. Our further study will focus on the developing of a detection platform with larger gold particles, which will display a dominant scattering component and enhance the fluorescence signal. Furthermore, the results of sequence-specific detection of DNA hybridization based on OMCVD gold particles provide an excellent application potential for this kind of cheap, simple, and mild preparation protocol applied in this gold fabrication method. In the final chapter, SPFS was used for the in-depth characterizations of the conformational changes of commercial carboxymethyl dextran (CMD) substrate induced by pH and ionic strength variations were studied using surface plasmon resonance spectroscopy. The pH response of CMD is due to the changes in the electrostatics of the system between its protonated and deprotonated forms, while the ionic strength response is attributed from the charge screening effect of the cations that shield the charge of the carboxyl groups and prevent an efficient electrostatic repulsion. Additional studies were performed using SPFS with the aim of fluorophore labeling the carboxymethyl groups. CMD matrices showed typical pH and ionic strength responses, such as high pH and low ionic strength swelling. Furthermore, the effects of the surface charge and the crosslink density of the CMD matrix on the extent of stimuli responses were investigated. The swelling/collapse ratio decreased with decreasing surface concentration of the carboxyl groups and increasing crosslink density. The study of the CMD responses to external and internal variables will provide valuable background information for practical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Opportunistic diseases caused by Human Immunodeficiency Virus (HIV) and Hepatitis B Virus (HBV) is an omnipresent global challenge. In order to manage these epidemics, we need to have low cost and easily deployable platforms at the point-of-care in high congestions regions like airports and public transit systems. In this dissertation we present our findings in using Localized Surface Plasmon Resonance (LSPR)-based detection of pathogens and other clinically relevant applications using microfluidic platforms at the point-of-care setting in resource constrained environment. The work presented here adopts the novel technique of LSPR to multiplex a lab-on-a-chip device capable of quantitatively detecting various types of intact viruses and its various subtypes, based on the principle of a change in wavelength occurring when metal nano-particle surface is modified with a specific surface chemistry allowing the binding of a desired pathogen to a specific antibody. We demonstrate the ability to detect and quantify subtype A, B, C, D, E, G and panel HIV with a specificity of down to 100 copies/mL using both whole blood sample and HIV-patient blood sample discarded from clinics. These results were compared against the gold standard Reverse Transcriptase Polymerase Chain Reaction (RT-qPCR). This microfluidic device has a total evaluation time for the assays of about 70 minutes, where 60 minutes is needed for the capture and 10 minutes for data acquisition and processing. This LOC platform eliminates the need for any sample preparation before processing. This platform is highly multiplexable as the same surface chemistry can be adapted to capture and detect several other pathogens like dengue virus, E. coli, M. Tuberculosis, etc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-08

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silk fabrics were colored by gold nanoparticles (NPs) that were in situ synthesized through the induction of sunlight. Owing to the localized surface plasmon resonance (LSPR) of gold NPs, the treated silk fabrics presented vivid colors. The photo-induced synthesis of gold NPs was also realized on wet silk through adsorbing gold ions out of solution, which provides a water-saving coloration method for textiles. Besides, the patterning of silk was feasible using this simple sunlight-induced coloration approach. The key factors of coloration including gold ion concentration, pH value, and irradiation time were investigated. Moreover, it was demonstrated that either ultraviolet (UV) light or visible light could induce the generation of gold NPs on silk fabrics. The silk fabrics with gold NPs exhibited high light resistance including great UV-blocking property and excellent fastness to sunlight.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We recently developed a binding assay format by incorporating native transmembrane receptors into artificial phospholipid bilayers on biosensor devices for surface plasmon resonance spectroscopy. By extending the method to surface plasmon-enhanced fluorescence spectroscopy (SPFS), sensitive recording of the association of even very small ligands is enabled. Herewith, we monitored binding of synthetic mono- and oligomeric RGD-based peptides and peptidomimetics to integrins alphavbeta3 and alphavbeta5, after having confirmed correct orientation and functionality of membrane-embedded integrins. We evaluated integrin binding of RGD multimers linked together via aminohexanoic acid (Ahx) spacers and showed that the dimer revealed higher binding activity than the tetramer, followed by the RGD monomers. The peptidomimetic was also found to be highly active with a slightly higher selectivity toward alphavbeta3. The different compounds were also evaluated in in vitro cell adhesion tests for their capacity to interfere with alphavbeta3-mediated cell attachment to vitronectin. We hereby demonstrated that the different RGD monomers were similarly effective; the RGD dimer and tetramer showed comparable IC50 values, which were, however, significantly higher than those of the monomers. Best cell detachment from vitronectin was achieved by the peptidomimetic. The novel SPFS-binding assay platform proves to be a suitable, reliable, and sensitive method to monitor the binding capacity of small ligands to native transmembrane receptors, here demonstrated for integrins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface plasmon resonances of arrays of parallel copper nanowires, embedded in ion track-etched polycarbonate membranes, were investigated by systematic changes of nanowires’ topology and arrays area density. The extinction spectra exhibit two peaks which are attributed to interband transitions of Cu bulk metal and to a dipolar surface plasmon resonance, respectively. The resonances were investigated as a function of wire diameter and length, mean distance between adjacent wires, and angle of incidence of the light field with respect to the long wire axis. The dipolar peak shifts to larger wavelengths with increasing diameter and length, and diminishing mean distance between adjacent wires. Additionally, the shape effect on the dipolar peak is investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sandwich structure consisting of Ag nanoparticles (NPs), p-aminothiophenol (p-ATP) self-assembled monolayers (SAMs), and Ag NPs was fabricated on glass and characterized by surface enhanced Raman scattering (SERS). The SERS spectrum of a p-ATP SAM in such sandwich structure shows that the electromagnetic enhancement is greater than that on Ag NPs assembled on glass. The obtained enhancement factors (EF) on solely one sandwich structure were as large as 6.0 +/- 0.62x10(4) and 1.2 +/- 0.62x10(7) for the 7a and 3b(b(2)) vibration modes, respectively. The large enhancement effect of p-ATP SAMs is likely a result of plasmon coupling between the two layers of Ag NP (localized surface plasmon) resonance, creating a large localized electromagnetic field at their interface, where p-ATP resides. Moreover, the fact that large EF values (similar to 1.9 +/- 0.7x10(4) and 9.4 +/- 0.7x10(6) for the 7a- and b(2)-type vibration modes, respectively) were also obtained on a single sandwich structure of Au NPs/p-ATP SAMs/Ag NPs in the visible demonstrates that the electromagnetic coupling does not exist only between Ag NPs but also between Au and Ag NPs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The kinetic analysis of the interaction between tumor necrosis factor(TNF) and its monoclonal antibody was performed by surface plasmon resonance(SPR) technique. The monoclonal antibody was immobilized to the surface of CM5 sensor chip by amine coupling. TNF at different concentrations was injected across the mAb immobilized surface. The interaction was recorded in real time and could be seen on the sensorgram. One cycle, including association, dissociation and regeneration, lasted no more than 15 min. The interaction results was evaluated using 1 : 1 Langmuir binding model. The kinetic rate constants were calculated to be: k =1.68 X 10(3) L (.) mol(-1) (.) s(-1), k(d) = 1.73 X 10(-4) s(-1), and the affinity constants K-A = 9. 7 X 10(3) L (.) mol(-1), K-r)= 1. 03 X 10(-7) Mol (.) L-1. The X-2 was 3.47, which showed that the interaction is consistent with the 1 : I model. We can see from the results that although there are two binding sites in one mAb molecule, TNF reacts with each site in an independent and noncooperative manner.