887 resultados para Local and remote sensors
Resumo:
Wearable inertial and magnetic measurements units (IMMU) are an important tool for underwater motion analysis because they are swimmer-centric, they require only simple measurement set-up and they provide the performance results very quickly. In order to estimate 3D joint kinematics during motion, protocols were developed to transpose the IMMU orientation estimation to a biomechanical model. The aim of the thesis was to validate a protocol originally propositioned to estimate the joint angles of the upper limbs during one-degree-of-freedom movements in dry settings and herein modified to perform 3D kinematics analysis of shoulders, elbows and wrists during swimming. Eight high-level swimmers were assessed in the laboratory by means of an IMMU while simulating the front crawl and breaststroke movements. A stereo-photogrammetric system (SPS) was used as reference. The joint angles (in degrees) of the shoulders (flexion-extension, abduction-adduction and internal-external rotation), the elbows (flexion-extension and pronation-supination), and the wrists (flexion-extension and radial-ulnar deviation) were estimated with the two systems and compared by means of root mean square errors (RMSE), relative RMSE, Pearson’s product-moment coefficient correlation (R) and coefficient of multiple correlation (CMC). Subsequently, the athletes were assessed during pool swimming trials through the IMMU. Considering both swim styles and all joint degrees of freedom modeled, the comparison between the IMMU and the SPS showed median values of RMSE lower than 8°, representing 10% of overall joint range of motion, high median values of CMC (0.97) and R (0.96). These findings suggest that the protocol accurately estimated the 3D orientation of the shoulders, elbows and wrists joint during swimming with accuracy adequate for the purposes of research. In conclusion, the proposed method to evaluate the 3D joint kinematics through IMMU was revealed to be a useful tool for both sport and clinical contexts.
Resumo:
The kinematics is a fundamental tool to infer the dynamical structure of galaxies and to understand their formation and evolution. Spectroscopic observations of gas emission lines are often used to derive rotation curves and velocity dispersions. It is however difficult to disentangle these two quantities in low spatial-resolution data because of beam smearing. In this thesis, we present 3D-Barolo, a new software to derive the gas kinematics of disk galaxies from emission-line data-cubes. The code builds tilted-ring models in the 3D observational space and compares them with the actual data-cubes. 3D-Barolo works with data at a wide range of spatial resolutions without being affected by instrumental biases. We use 3D-Barolo to derive rotation curves and velocity dispersions of several galaxies in both the local and the high-redshift Universe. We run our code on HI observations of nearby galaxies and we compare our results with 2D traditional approaches. We show that a 3D approach to the derivation of the gas kinematics has to be preferred to a 2D approach whenever a galaxy is resolved with less than about 20 elements across the disk. We moreover analyze a sample of galaxies at z~1, observed in the H-alpha line with the KMOS/VLT spectrograph. Our 3D modeling reveals that the kinematics of these high-z systems is comparable to that of local disk galaxies, with steeply-rising rotation curves followed by a flat part and H-alpha velocity dispersions of 15-40 km/s over the whole disks. This evidence suggests that disk galaxies were already fully settled about 7-8 billion years ago. In summary, 3D-Barolo is a powerful and robust tool to separate physical and instrumental effects and to derive a reliable kinematics. The analysis of large samples of galaxies at different redshifts with 3D-Barolo will provide new insights on how galaxies assemble and evolve throughout cosmic time.
Resumo:
The main objective of this study is to reveal the housing patterns in Cairo as one of the most rapidly urbanizing city in the developing world. The study outlines the evolution of the housing problem and its influencing factors in Egypt generally and in Cairo specifically. The study takes into account the political transition from the national state economy to the open door policy, the neo-liberal period and finally to the housing situation after the January 2011 Revolution. The resulting housing patterns in Cairo Governorate were identified as (1) squatter settlements, (2) semi-informal settlements, (3) deteriorated inner pockets, and (4) formal settlements. rnThe study concluded that the housing patterns in Cairo are reflecting a multifaceted problem resulting in: (1) the imbalance between the high demand for affordable housing units for low-income families and the oversupply of upper-income housing, (2) the vast expansion of informal areas both on agricultural and desert lands, (3) the deterioration of the old parts of Cairo without upgrading or appropriate replacement of the housing structure, and (4) the high vacancy rate of newly constructed apartmentsrnThe evolution and development of the current housing problem were attributed to a number of factors. These factors are demographic factors represented in the rapid growth of the population associated with urbanization under the dictates of poverty, and the progressive increase of the prices of both buildable land and building materials. The study underlined that the current pattern of population density in Cairo Governorate is a direct result of the current housing problems. Around the depopulation core of the city, a ring of relatively stable areas in terms of population density has developed. Population densification, at the expense of the depopulation core, is characterizing the peripheries of the city. The population density in relation to the built-up area was examined using Landsat-7 ETM+ image (176/039). The image was acquired on 24 August 2006 and considered as an ideal source for land cover classification in Cairo since it is compatible with the population census 2006.rnConsidering that the socio-economic setting is a driving force of change of housing demand and that it is an outcome of the accumulated housing problems, the socio-economic deprivations of the inhabitants of Cairo Governorate are analyzed. Small administrative units in Cairo are categorized into four classes based on the Socio-Economic Opportunity Index (SEOI). This index is developed by using multiple domains focusing on the economic, educational and health situation of the residential population. The results show four levels of deprivation which are consistent with the existing housing patterns. Informal areas on state owned land are included in the first category, namely, the “severely deprived” level. Ex-formal areas or deteriorated inner pockets are characterized as “deprived” urban quarters. Semi-informal areas on agricultural land concentrate in the third category of “medium deprived” settlements. Formal or planned areas are included mostly in the fourth category of the “less deprived” parts of Cairo Governorate. rnFor a better understanding of the differences and similarities among the various housing patterns, four areas based on the smallest administrative units of shiakhat were selected for a detailed study. These areas are: (1) El-Ma’desa is representing a severely deprived squatter settlement, (2) Ain el-Sira is an example for an ex-formal deprived area, (3) El-Marg el-Qibliya was selected as a typical semi-informal and medium deprived settlement, and (4) El-Nozha is representing a formal and less deprived area.rnThe analysis at shiakhat level reveals how the socio-economic characteristics and the unregulated urban growth are greatly reflected in the morphological characteristics of the housing patterns in terms of street network and types of residential buildings as well as types of housing tenure. It is also reflected in the functional characteristics in terms of land use mix and its degree of compatibility. It is concluded that the provision and accessibility to public services represents a performance measure of the dysfunctional structure dominating squatter and semi-informal settlements on one hand and ample public services and accessibility in formal areas on the other hand.rn
Market Prices and Food Aid Local and Regional Procurement and Distribution: A Multi-Country Analysis
Resumo:
To date, no research has rigorously addressed the concern that local and regional procurement (LRP) of food aid could affect food prices and food price volatility in food aid source and recipient countries. We assemble spatially and temporally disaggregated data and estimate the relationship between food prices and their volatility and local food aid procurement and distribution across seven countries for several commodities. In most cases, LRP activities have no statistically significant relationship with either local price levels or food price volatility. The few exceptions underscore the importance of market monitoring. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Local and regional procurement (LRP) of food aid is often claimed to lead to quicker and more cost-effective response. We generate timeliness and cost-effectiveness estimates by comparing US-funded LRP activities in nine countries against in-kind, transoceanic food aid shipments from the US to the same countries during the same timeframe. Procuring food locally or distributing cash or vouchers results in a time savings of nearly 14 weeks, a 62 percent gain. Cost-effectiveness varies significantly by commodity type. Procuring grains locally saved over 50 percent, on average, while local procurement of processed commodities was not always cost-effective. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
We compare the impacts across a range of criteria of local and regional procurement (LRP) relative to transoceanic shipment of food aid in Burkina Faso and Guatemala. We find that neither instrument dominates the other across all criteria in either country, although LRP commonly performs at least as well as transoceanic shipment with respect to timeliness, cost, market price impacts, satisfying recipients' preferences, food quality and safety, and in benefiting smallholder suppliers. LRP is plainly a valuable food assistance tool, but its advantages and disadvantages must be carefully weighed, compared, and prioritized depending on the context and program objectives. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Objective: In 2011, the term “intratumoral budding, ITB” was used to describe the presence of tumor buds within the main tumor body and was correlated to worse clinical outcome in colorectal cancer patients. Here, we further elucidate the potential clinical role of ITB in pre-operative biopsies using pan-cytokeratin stained tissues and a quantitative scoring system. Method: 139 pre-operative biopsies from patients with colorectal cancer underwent immunohistochemistry for pancytokeratin (AE1/AE3). ITB were counted in the area of densest budding (40×) and classified as high-grade when >10 buds/HPF were observed based on receiver operating characteristic (ROC) curve analysis. Results: High-grade ITB occurred in 26.6 % of cases and was associated with right-sided tumor location (p=0.0356), more advanced pT (p=0.0198) and pN (p<0.0001) classifications, distant metastasis (p=0.0164), higher tumor grade (p=0.0037) and lymphatic invasion (p=0.0445). The specificity and positive predictive value for lymph node metastasis was 86.7 % and 75.6 %, respectively. Disease-free survival was significantly worse in patients with high-grade ITB (5-year survival=25 %) in comparison to patients with low-grade ITB (5-year survival=55 %) (p=0.0157). Conclusion: The assessment of ITB in pre-operative biopsies is predictive of local and distant metastasis in corresponding resections and should be considered in daily management of colorectal cancer patients.
Resumo:
Stress proteins represent a group of highly conserved intracellular proteins that provide adaptation against cellular stress. The present study aims to elucidate the stress protein-mediated effects of local hyperthermia and systemic administration of monophosphoryl lipid A (MPL) on oxygenation, metabolism and survival in bilateral porcine random pattern buttock flaps. Preconditioning was achieved 24h prior to surgery by applying a heating blanket on the operative site (n = 5), by intravenous administration of MPL at a dosage of 35 microg/kg body weight (n = 5) or by combining the two (n = 5). The flaps were monitored with laser Doppler flowmetry, polarographic microprobes and microdialysis until 5h postoperatively. Semiquantitative immunohistochemistry was performed for heat shock protein 70 (HSP70), heat shock protein 32 (also termed haem oxygenase-1, HO-1), and inducible nitrc oxide synthase (iNOS). The administration of MPL increased the impaired microcirculatory blood flow in the proximal part of the flap and partial oxygen tension in the the distal part by approximately 100% each (both P<0.05), whereas both variables remained virtually unaffected by local heat preconditioning. Lactate/pyruvate (L/P) ratio and glycerol concentration (representing cell membrane disintegration) in the distal part of the flap gradually increased to values of approximately 500 mmol/l and approximately 350 micromol/l, respectively (both P<0.01), which was substantially attenuated by heat application (P<0.01 for L/P ratio and P<0.05 for glycerol) and combined preconditioning (P<0.01 for both variables), whereas the effect of MPL was less marked (not significant). Flap survival was increased from 56% (untreated animals) to 65% after MPL (not significant), 71% after heat application (P<0.05) and 78% after both methods of preconditioning (P<0.01). iNOS and HO-1 were upregulated after each method of preconditioning (P<0.05), whereas augmented HSP70 staining was only observed after heat application (P<0.05). We conclude that local hyperthermia is more effective in preventing flap necrosis than systemic MPL administration because of enhancing the cellular tolerance to hypoxic stress, which is possibly mediated by HSP70, whereas some benefit may be obtained with MPL due to iNOS and HO-1-mediated improvement in tissue oxygenation.
Resumo:
Tsuga canadensis (eastern hemlock) is a highly shade-tolerant, late-successional, and long-lived conifer species found throughout eastern North America. It is most often found in pure or nearly pure stands, because highly acidic and nutrient poor forest floor conditions are thought to favor T. canadensis regeneration while simultaneously limiting the establishment of some hardwood species with greater nutrient requirements. Once a common species, T. canadensis is currently experiencing widescale declines across its range. The hemlock woolly adelgid (Adelges tsugae) is decimating the population across its eastern distribution. Across the Upper Great Lakes region, where the adelgid is currently being held at bay by cold winter temperatures, T. canadensis has been experiencing failures in regeneration attributed, in part, to herbivory by white-tailed deer (Odocoileus virginianus). Deer utilize T. canadensis stands as winter habitat in areas of high snow depth. Tsuga canadensis, once a major component of these forests, currently exists at just a fraction of its pre-settlement abundance due to historic logging and contemporary forest management practices, and what remains is found in small remnant patches surrounded by second- and third-growth deciduous forests. The deer population across the region, however, is likely double that of pre-European settlement times. In this dissertation I explore the relationship between white-tailed deer use of T. canadensis as winter habitat and the effect this use is having on regeneration and forest succession. For this research I quantified stand composition and structure and abiotic variables of elevation and snow depth in 39 randomly selected T. canadensis stands from across the western Upper Peninsula of Michigan. I also quantified composition and the configuration of the landscapes surrounding these stands. I measured relative deer use of T. canadensis stands as pellet group piles deposited in each stand during each of three consecutive winters, 2005-06, 2006-07, and 2007-08. The results of this research suggest that deer use of T. canadensis stands as winter habitat is influenced primarily by snow depth, elevation, and the composition and configuration of the greater landscapes surrounding these stands. Specifically, stands with more heterogeneous landscapes surrounding them (i.e., a patchy mosaic of conifer, deciduous, and open cover) had higher relative deer use than stands surrounded by homogenous deciduous forest cover. Additionally, the intensity of use and the number of stands used was greater in years with higher average snow depth. Tsuga canadensis regeneration in these stands was negatively associated with deer use and Acer saccharum (sugar maple) basal area. Of the 39 stands, 17 and 22 stands had no T. canadensis regeneration in small and large sapling categories, respectively. Acer saccharum was the most common understory tree species, and the importance of A. saccharum in the understory (stems < 10 cm dbh) of the stands was positively associated with overstory A. saccharum dominance. Tsuga canadensis establishment was associated with high-decay coarse woody debris and moss, and deciduous leaf litter inputs in these stands may be limiting access to these important microsites. Furthermore, A. saccharum is more tolerant to the effects of deer herbivory than T. canadensis, giving A. saccharum a competitive advantage in stands being utilized as winter habitat by deer. My research suggests that limited microsite availability, in conjunction with deer herbivory, may be leading to an erosion in T. canadensis patch stability and an altered successional trajectory toward one of A. saccharum dominance, an alternately stable climax species.
Resumo:
Brain activity relies on transient, fluctuating interactions between segregated neuronal populations. Synchronization within a single and between distributed neuronal clusters reflects the dynamics of these cooperative patterns. Thus absence epilepsy can be used as a model for integrated, large-scale investigation of the emergence of pathological collective dynamics in the brain. Indeed, spike-wave discharges (SWD) of an absence seizure are thought to reflect abnormal cortical hypersynchronization. In this paper, we address two questions: how and where do SWD arise in the human brain? Therefore, we explored the spatio-temporal dynamics of interactions within and between widely distributed cortical sites using magneto-encephalographic recordings of spontaneous absence seizures. We then extracted, from their time-frequency analysis, local synchronization of cortical sources and long-range synchronization linking distant sites. Our analyses revealed a reproducible sequence of 1) long-range desynchronization, 2) increased local synchronization and 3) increased long-range synchronization. Although both local and long-range synchronization displayed different spatio-temporal profiles, their cortical projection within an initiation time window overlap and reveal a multifocal fronto-central network. These observations contradict the classical view of sudden generalized synchronous activities in absence epilepsy. Furthermore, they suggest that brain states transition may rely on multi-scale processes involving both local and distant interactions.