998 resultados para Lithium salt


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the structure of the title magnesium complex with the phenoxy herbicide (2,4-dichlorophenoxy)acetic acid (2,4-D), [Mg(H2O)5(C8H5Cl2O3)]+ C8H5Cl2O3)- . 0.5H2O, the discrete cationic MgO6 complex units comprise a carboxyl O-donor from a monodentate 2,4-D cationic ligand and five water molecules in a slightly distorted octahedral coordination. The 2,4-D anions are linked to the complex units through duplex water O-H...O(carboxyl) hydrogen bonds through the coordinated water molecules. In the crystal inter-unit O-H...O hydrogen-bonding interactions involving coordinated water molecules as well as the hemi-hydrate solvate molecule with carboxyl O-atom acceptors, give a two-dimensional layered structure lying parallel (001), in which pi-pi ligand-cation interactions [minimum ring centroid separation, 3.6405(17)A] and a short O-H...Cl interaction [3.345(2)A] are also found.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structures of the 1:1 co-crystalline adduct C8H6BrN3S . C7H5NO4 (I) and the salt C8H7BrN3S+ C7H3N2O7- (II) from the interaction of 5-(4-bromophenyl)-1,3,4-thiadiazol-2-amine with 4-nitrobenzoic acid and 3,5-dinitrosalicylic acid, respectively, have been determined. The primary inter-species association in both (I) and (II) is through duplex R2/2(8) (N-H...O/O-H...O) or (N-H...O/N-H...O) hydrogen bonds, respectively, giving heterodimers. In (II), these are close to planar [dihedral angles between the thiadiazole ring and the two phenyl rings are 2.1(3)deg. (intra) and 9.8(2)deg. (inter)], while in (I) these angles are 22.11(15) and 26.08(18)deg., respectively. In the crystal of (I), the heterodimers are extended into a one-dimensional chain along b through an amine N-...N(thiadiazole) hydrogen bond but in (II), a centrosymmetric cyclic heterotetramer structure is generated through N-H...O hydrogen bonds to phenol and nitro O-atom acceptors and features, together with the primary R2/2(8) interaction, conjoined R4/6(12), R2/1(6) and S(6) ring motifs. Also present in (I) are pi--pi interactions between thiadiazole rings [minimum ring centroid separation, 3.4624(16)deg.] as well as short Br...O(nitro) interactions in both (I) and (II) [3.296(3)A and 3.104(3)A, respectively].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structures of the isomorphous potassium and rubidium polymeric coordination complexes with 4-nitrobenzoic acid, poly[mu2-aqua-aqua-mu3-(4-nitrobenzoato)-potassium], [K(C7H4N2O2)(H2O)2]n, (I) and poly[mu3-aqua-aqua-mu5-(4-nitrobenzoato)-rubidium], [Rb(C7H4N2O2)(H2O)2]n, (II) have been determined. In (I) the very distorted KO6 coordination sphere about the K+ centres in the repeat unit comprise two bridging nitro O-atom donors, a single bridging carboxyl O-atom donor and two water molecules, one of which is bridging. In the the Rb complex (II), the same basic MO6 coordination is found in the repeat unit but is expanded to RbO9 through a slight increase in the accepted Rb-O bond length range and includes an additional Rb-O(carboxyl) bond, completing a bidentate O,O'-chelate interaction, and additional bridging Rb-Onitro) and Rb-O(water) bonds. The comparative K-O and Rb-O bond length ranges are 2.738(3)-3.002(3)Ang. (I) and 2.884(2)-3.182(2)Ang. (II). The structure of (II) is also isomorphous as well as isostructural with the known structure of the nine-coordinate caesium 4-nitrobenzoate analogue, [Cs(C7H4N2O~2~)(H~2~O)2]n, (III) in which the Cs---O range is 3.047(4)-3.338(4)Ang. In all three complexes, common basic polymeric extensions are found, including two different centrosymmetric bridging interactions through both water and nitro groups as well as extensions along c through the p-related carboxyl group, giving a two-dimensional structure in (I). In (II) and (III), three-dimensional structures are generated through additional bridges through the nitro and water O-atoms. In all structures, both water molecules are involved in similar intra-polymer O-H...O hydrogen-bonding interactions to both carboxyl as well as water O-atom acceptors. A comparison of the varied coordination behaviour of the full set of Li-Cs salts with 4-nitrobenzoic acid is also made.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Developing nano/micro-structures which can effectively upgrade the intriguing properties of electrode materials for energy storage devices is always a key research topic. Ultrathin nanosheets were proved to be one of the potential nanostructures due to their high specific surface area, good active contact areas and porous channels. Herein, we report a unique hierarchical micro-spherical morphology of well-stacked and completely miscible molybdenum disulfide (MoS2) nanosheets and graphene sheets, were successfully synthesized via a simple and industrial scale spray-drying technique to take the advantages of both MoS2 and graphene in terms of their high practical capacity values and high electronic conductivity, respectively. Computational studies were performed to understand the interfacial behaviour of MoS2 and graphene, which proves high stability of the composite with high interfacial binding energy (−2.02 eV) among them. Further, the lithium and sodium storage properties have been tested and reveal excellent cyclic stability over 250 and 500 cycles, respectively, with the highest initial capacity values of 1300 mAh g−1 and 640 mAh g−1 at 0.1 A g−1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An environmentally benign, highly conductive, and mechanically strong binder system can overcome the dilemma of low conductivity and insufficient mechanical stability of the electrodes to achieve high performance lithium ion batteries (LIBs) at a low cost and in a sustainable way. In this work, the naturally occurring binder sodium alginate (SA) is functionalized with 3,4-propylenedioxythiophene-2,5-dicarboxylic acid (ProDOT) via a one-step esterification reaction in a cyclohexane/dodecyl benzenesulfonic acid (DBSA)/water microemulsion system, resulting in a multifunctional polymer binder, that is, SA-PProDOT. With the synergetic effects of the functional groups (e.g., carboxyl, hydroxyl, and ester groups), the resultant SA-PProDOT polymer not only maintains the outstanding binding capabilities of sodium alginate but also enhances the mechanical integrity and lithium ion diffusion coefficient in the LiFePO4 (LFP) electrode during the operation of the batteries. Because of the conjugated network of the PProDOT and the lithium doping under the battery environment, the SA-PProDOT becomes conductive and matches the conductivity needed for LiFePO4 LIBs. Without the need of conductive additives such as carbon black, the resultant batteries have achieved the theoretical specific capacity of LiFePO4 cathode (ca. 170 mAh/g) at C/10 and ca. 120 mAh/g at 1C for more than 400 cycles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the structure of the title complex [[Na(H2O)3]+ (C6H2Cl3N2O2)-^ . 3(H2O)]n, the Na salt of the herbicide picloram, the cation is a polymeric chain structure, based on doubly water-bridged NaO5 trigonal bipyramidal complex units which have in addition, a singly-bonded monodentate water molecule. Each of the bridges within the chain which lies along the a cell direction is centrosymmetric with Na...Na separations of 3.4807(16) and 3.5109(16)Ang. In the crystal, there are three water molecules of solvation and these, as well as the coordinated water molecules and the amino group of the 4-amino-3,5,6-trichloropicolinate anion are involved in extensive inter-species hydrogen-bonding interactions with carboxyl and water O-atoms as well as the pyridine N-atom. Among these association is a centrosymmetric cyclic tetra-water R4/4(8) ring , resulting in an overall three-dimensional structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structures of two hydrated salts of 4-aminophenylarsonic acid (p-arsanilic acid), namely ammonium 4-aminophenylarsonate monohydrate, NH4(+)·C6H7AsNO3(-)·H2O, (I), and the one-dimensional coordination polymer catena-poly[[(4-aminophenylarsonato-κO)diaquasodium]-μ-aqua], [Na(C6H7AsNO3)(H2O)3]n, (II), have been determined. In the structure of the ammonium salt, (I), the ammonium cations, arsonate anions and water molecules interact through inter-species N-H...O and arsonate and water O-H...O hydrogen bonds, giving the common two-dimensional layers lying parallel to (010). These layers are extended into three dimensions through bridging hydrogen-bonding interactions involving the para-amine group acting both as a donor and an acceptor. In the structure of the sodium salt, (II), the Na(+) cation is coordinated by five O-atom donors, one from a single monodentate arsonate ligand, two from monodentate water molecules and two from bridging water molecules, giving a very distorted square-pyramidal coordination environment. The water bridges generate one-dimensional chains extending along c and extensive interchain O-H...O and N-H...O hydrogen-bonding interactions link these chains, giving an overall three-dimensional structure. The two structures reported here are the first reported examples of salts of p-arsanilic acid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Directional synthesis of SnO2@graphene nanocomposites via a one-step, low-cost, and up-scalable wetmechanochemical method is achieved using graphene oxide and SnCl2 as precursors. The graphene oxides are reduced to graphene while the SnCl2 is oxidized to SnO2 nanoparticles that are in situ anchored onto the graphene sheets evenly and densely, resulting in uniform SnO2@graphene nanocomposites. The prepared nanocomposites possess excellent electrochemical performance and outstanding cycling in Li-ion batteries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Being simple, inexpensive, scalable and environmentally friendly, microporous biomass biochars have been attracting enthusiastic attention for application in lithium-sulfur (Li-S) batteries. Herein, porous bamboo biochar is activated via a KOH/annealing process that creates a microporous structure, boosts surface area and enhances electronic conductivity. The treated sample is used to encapsulate sulfur to prepare a microporous bamboo carbon-sulfur (BC-S) nanocomposite for use as the cathode for Li-S batteries for the first time. The BC-S nanocomposite with 50 wt.% sulfur content delivers a high initial capacity of 1,295 mA·h/g at a low discharge rate of 160 mA/g and high capacity retention of 550 mA·h/g after 150 cycles at a high discharge rate of 800 mA/g with excellent coulombic efficiency (⩾95%). This suggests that the BC-S nanocomposite could be a promising cathode material for Li-S batteries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hybrid urchin-like nanostructures composed of a spherical onion-like carbon (OLC) core and MoS2 nanoleaves were synthesized by a simple solvothermal method followed by thermal annealing treatment. Compared to commercial MoS2 powder, MoS2/OLC nanocomposites exhibit enhanced electrochemical performance as anode materials of lithium-ion batteries (LIBs) with a specific capacity of 853 mA h g−1 at a current density of 50 mA g−1 after 60 cycles, and a moderate initial coulombic efficiency of 71.1%. Furthermore, a simple pre-lithiation method based on direct contact of lithium foil with MoS2/OLC nano-urchins was used to achieve a very high coulombic efficiency of 97.6% in the first discharge/charge cycle, which is at least 26% higher compared to that of pristine MoS2/OLC nano-urchins. This pre-lithiation method can be generalized to develop other carbon-metal sulfide nanohybrids for LIB anode materials. These results may open up a new avenue for the development of the next-generation high-performance LIBs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The catalytic role of germanium (Ge) was investigated to improve the electrochemical performance of tin dioxide grown on graphene (SnO(2)/G) nanocomposites as an anode material of lithium ion batteries (LIBs). Germanium dioxide (GeO(20) and SnO(2) nanoparticles (<10 nm) were uniformly anchored on the graphene sheets via a simple single-step hydrothermal method. The synthesized SnO(2)(GeO(2))0.13/G nanocomposites can deliver a capacity of 1200 mA h g(-1) at a current density of 100 mA g(-1), which is much higher than the traditional theoretical specific capacity of such nanocomposites (∼ 702 mA h g(-1)). More importantly, the SnO(2)(GeO(2))0.13/G nanocomposites exhibited an improved rate, large current capability (885 mA h g(-1) at a discharge current of 2000 mA g(-1)) and excellent long cycling stability (almost 100% retention after 600 cycles). The enhanced electrochemical performance was attributed to the catalytic effect of Ge, which enabled the reversible reaction of metals (Sn and Ge) to metals oxide (SnO(2) and GeO(2)) during the charge/discharge processes. Our demonstrated approach towards nanocomposite catalyst engineering opens new avenues for next-generation high-performance rechargeable Li-ion batteries anode materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new liquid crystalline phase, induced by the addition of small amounts of a non-mesogenic solute (such as dimethyl sulphoxide or methyl iodide) to a quaternary ammonium salt, N-methyl-N,N,N-trioctadecylammonium iodide (MTAI), has been detected by NMR and optical microscopic studies. In some cases, there is a coexistence of nematic and smectic phases. Information on the ordering of the phases in the magnetic field of the spectrometer has been derived from NMR spectra of a dissolved molecule, C-13-enriched methyl iodide. The low order parameter of the pure thermotropic nematic phase of the salt provides first-order spectra of the dissolved oriented molecules. Analyses of spectra of cis,cis-mucononitrile exemplifies the utility of the MTAI nematic phase in the determination of structural parameters of the solute.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In our earlier study, we have observed that hypokalemia in langur monkeys, following gossypol acetic acid (GAA) treatment (5 mg dose level) when used as an antispermatogenic agent, and potassium salt supplementation partially maintained body potassium level of the animals. The aims of the present investigation was to confirm further occurrence of hypokalemia in the monkey (comparatively at two higher dose levels) and the role of potassium salt in preventing occurrence of gossypol-induced hypokalemia. Highly purified gossypol acetic acid alone at two dose levels (7.5 and 10 mg/animal/day; oral) and in combination with potassium chloride (0.50 and 0.75 mg/animal/day; oral) was given for 180 days. Treatment with gossypol alone as well as with the supplementation of potassium salt resulted in severe oligospermia and azoospermia. Animals receiving gossypol alone showed significant potassium deficiency with signs of fatigue at both dose levels. Enhanced potassium loss through urine was found in potassium-deficient animals, whereas animals receiving gossypol acetic acid plus potassium salt showed normal serum potassium with a less significant increase in urine potassium level during treatment phases. Other parameters of the body remained within normal range except gradual and significant elevation in serum transaminases activity. The animals gradually returned to normalcy following 150 and 180 days of termination of the treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lithium silicophosphate glasses have been prepared by a sol-gel route over a wide range of compositions. Their structural and electrical properties have been investigated. Infrared spectroscopic studies show the presence of hydroxyl groups attached to Si and P. MAS NMR investigations provide evidence for the presence of different phosphatic units in the structure. The variations of de conductivities at 423 K and activation energies have been studied as a function of composition, and both exhibit an increasing trend with the ratio of nonbridging oxygen to bridging oxygen in the structure. Ac conductivity behavior shows that the power law exponent, s, is temperature dependent and exhibits a minimum. Relaxation behavior has been examined in detail using an electrical modulus formalism, and modulus data were fitted to Kohlraush-William-Watts stretched exponential function. A structural model has been proposed and the unusual properties exhibited by this unique system of glasses have been rationalized using this model. Ion transport in these glasses appears to be confined to unidimensional conduits defined by modified phosphate chains and interspersed with unmodified silica units.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the ferroelectric and pyroelectric properties of the composite films of lithium tantalate (LT) nanoparticle in poly(vinylidene fluoride) PVDF matrix at different volume fractions of LT (f(LT) = 0.047, 0.09 and 0.17). For an applied electric field of 150 kV cm(-1) the nonvolatile polarization of the composite was observed to increase from 0.014 mu C cm(-2) at f(LT) = 0 to 2.06 mu C cm(-2) at f(LT) = 0.17. For f(LT) = 0.17, the composite films exhibit a saturated ferroelectric hysteresis loop with a remanent polarization (2P(r) = 4.13 mu C cm(-2)). Compared with pure poled PVDF the composite films also showed a factor of about five enhancement in the pyroelectric coefficient at f(LT) = 0.17. When used in energy detection mode the pyroelectric voltage sensitivity of the composite films was found to increase from 3.93 to 18.5 VJ(-1) with an increase in f(LT) from 0.0 to 0.17.