980 resultados para Link prediction
Resumo:
Interpersonal factors are crucial to a deepened understanding of depression. Belongingness, also referred to as connectedness, has been established as a strong risk/protective factor for depressive symptoms. To elucidate this link it may be beneficial to investigate the relative importance of specific psychosocial contexts as belongingness foci. Here we investigate the construct of workplace belongingness. Employees at a disability services organisation (N = 125) completed measures of depressive symptoms, anxiety symptoms, workplace belongingness and organisational commitment. Psychometric analyses, including Horn's parallel analyses, indicate that workplace belongingness is a unitary, robust and measurable construct. Correlational data indicate a substantial relationship with depressive symptoms (r = −.54) and anxiety symptoms (r = −.39). The difference between these correlations was statistically significant, supporting the particular importance of belongingness cognitions to the etiology of depression. Multiple regression analyses support the hypothesis that workplace belongingness mediates the relationship between affective organisational commitment and depressive symptoms. It is likely that workplaces have the potential to foster environments that are intrinsically less depressogenic by facilitating workplace belongingness. From a clinical perspective, cognitions regarding the workplace psychosocial context appear to be highly salient to individual psychological health, and hence warrant substantial attention.
Prediction of resting energy requirements in people taking weight-inducing antipsychotic medications
Resumo:
More recently, lifespan development psychology models of adaptive development have been applied to the workforce to investigate ageing worker and lifespan issues. The current study uses the Learning and Development Survey (LDS) to investigate employee selection and engagement of learning and development goals and opportunities and constraints for learning at work in relation to demographics and career goals. It was found that mature age was associated with perceptions of preferential treatment of younger workers with respect to learning and development. Age was also correlated with several career goals. Findings suggest that younger workers’ learning and development options are better catered for in the workplace. Mature aged workers may compensate for unequal learning opportunities at work by studying for an educational qualification or seeking alternate job opportunities. The desire for a higher level job within the organization or educational qualification was linked to engagement in learning and development goals at work. It is suggested that an understanding of employee perceptions in the workplace in relation to goals and activities may be important in designing strategies to retain workers.
Resumo:
In many prediction problems, including those that arise in computer security and computational finance, the process generating the data is best modelled as an adversary with whom the predictor competes. Even decision problems that are not inherently adversarial can be usefully modeled in this way, since the assumptions are sufficiently weak that effective prediction strategies for adversarial settings are very widely applicable.
Resumo:
In many prediction problems, including those that arise in computer security and computational finance, the process generating the data is best modelled as an adversary with whom the predictor competes. Even decision problems that are not inherently adversarial can be usefully modeled in this way, since the assumptions are sufficiently weak that effective prediction strategies for adversarial settings are very widely applicable.
Resumo:
Background The majority of peptide bonds in proteins are found to occur in the trans conformation. However, for proline residues, a considerable fraction of Prolyl peptide bonds adopt the cis form. Proline cis/trans isomerization is known to play a critical role in protein folding, splicing, cell signaling and transmembrane active transport. Accurate prediction of proline cis/trans isomerization in proteins would have many important applications towards the understanding of protein structure and function. Results In this paper, we propose a new approach to predict the proline cis/trans isomerization in proteins using support vector machine (SVM). The preliminary results indicated that using Radial Basis Function (RBF) kernels could lead to better prediction performance than that of polynomial and linear kernel functions. We used single sequence information of different local window sizes, amino acid compositions of different local sequences, multiple sequence alignment obtained from PSI-BLAST and the secondary structure information predicted by PSIPRED. We explored these different sequence encoding schemes in order to investigate their effects on the prediction performance. The training and testing of this approach was performed on a newly enlarged dataset of 2424 non-homologous proteins determined by X-Ray diffraction method using 5-fold cross-validation. Selecting the window size 11 provided the best performance for determining the proline cis/trans isomerization based on the single amino acid sequence. It was found that using multiple sequence alignments in the form of PSI-BLAST profiles could significantly improve the prediction performance, the prediction accuracy increased from 62.8% with single sequence to 69.8% and Matthews Correlation Coefficient (MCC) improved from 0.26 with single local sequence to 0.40. Furthermore, if coupled with the predicted secondary structure information by PSIPRED, our method yielded a prediction accuracy of 71.5% and MCC of 0.43, 9% and 0.17 higher than the accuracy achieved based on the singe sequence information, respectively. Conclusion A new method has been developed to predict the proline cis/trans isomerization in proteins based on support vector machine, which used the single amino acid sequence with different local window sizes, the amino acid compositions of local sequence flanking centered proline residues, the position-specific scoring matrices (PSSMs) extracted by PSI-BLAST and the predicted secondary structures generated by PSIPRED. The successful application of SVM approach in this study reinforced that SVM is a powerful tool in predicting proline cis/trans isomerization in proteins and biological sequence analysis.
Resumo:
Early models of bankruptcy prediction employed financial ratios drawn from pre-bankruptcy financial statements and performed well both in-sample and out-of-sample. Since then there has been an ongoing effort in the literature to develop models with even greater predictive performance. A significant innovation in the literature was the introduction into bankruptcy prediction models of capital market data such as excess stock returns and stock return volatility, along with the application of the Black–Scholes–Merton option-pricing model. In this note, we test five key bankruptcy models from the literature using an upto- date data set and find that they each contain unique information regarding the probability of bankruptcy but that their performance varies over time. We build a new model comprising key variables from each of the five models and add a new variable that proxies for the degree of diversification within the firm. The degree of diversification is shown to be negatively associated with the risk of bankruptcy. This more general model outperforms the existing models in a variety of in-sample and out-of-sample tests.