990 resultados para Linear Series
Resumo:
This paper outlines a novel elevation linear Fresnel reflector (ELFR) and presents and validates theoretical models defining its thermal performance. To validate the models, a series of experiments were carried out for receiver temperatures in the range of 30-100 °C to measure the heat loss coefficient, gain in heat transfer fluid (HTF) temperature, thermal efficiency, and stagnation temperature. The heat loss coefficient was underestimated due to the model exclusion of collector end heat losses. The measured HTF temperature gains were found to have a good correlation to the model predictions - less than a 5% difference. In comparison to model predictions for the thermal efficiency and stagnation temperature, measured values had a difference of -39% to +31% and 22-38%, respectively. The difference between the measured and predicted values was attributed to the low-temperature region for the experiments. It was concluded that the theoretical models are suitable for examining linear Fresnel reflector (LFR) systems and can be adopted by other researchers.
Resumo:
Limited literature regarding parameter estimation of dynamic systems has been identified as the central-most reason for not having parametric bounds in chaotic time series. However, literature suggests that a chaotic system displays a sensitive dependence on initial conditions, and our study reveals that the behavior of chaotic system: is also sensitive to changes in parameter values. Therefore, parameter estimation technique could make it possible to establish parametric bounds on a nonlinear dynamic system underlying a given time series, which in turn can improve predictability. By extracting the relationship between parametric bounds and predictability, we implemented chaos-based models for improving prediction in time series. ^ This study describes work done to establish bounds on a set of unknown parameters. Our research results reveal that by establishing parametric bounds, it is possible to improve the predictability of any time series, although the dynamics or the mathematical model of that series is not known apriori. In our attempt to improve the predictability of various time series, we have established the bounds for a set of unknown parameters. These are: (i) the embedding dimension to unfold a set of observation in the phase space, (ii) the time delay to use for a series, (iii) the number of neighborhood points to use for avoiding detection of false neighborhood and, (iv) the local polynomial to build numerical interpolation functions from one region to another. Using these bounds, we are able to get better predictability in chaotic time series than previously reported. In addition, the developments of this dissertation can establish a theoretical framework to investigate predictability in time series from the system-dynamics point of view. ^ In closing, our procedure significantly reduces the computer resource usage, as the search method is refined and efficient. Finally, the uniqueness of our method lies in its ability to extract chaotic dynamics inherent in non-linear time series by observing its values. ^
Resumo:
Pythagoras, Plato and Euclid’s paved the way for Classical Geometry. The idea of shapes that can be mathematically defined by equations led to the creation of great structures of modern and ancient civilizations, and milestones in mathematics and science. However, classical geometry fails to explain the complexity of non-linear shapes replete in nature such as the curvature of a flower or the wings of a Butterfly. Such non-linearity can be explained by fractal geometry which creates shapes that emulate those found in nature with remarkable accuracy. Such phenomenon begs the question of architectural origin for biological existence within the universe. While the concept of a unifying equation of life has yet to be discovered, the Fibonacci sequence may establish an origin for such a development. The observation of the Fibonacci sequence is existent in almost all aspects of life ranging from the leaves of a fern tree, architecture, and even paintings, makes it highly unlikely to be a stochastic phenomenon. Despite its wide-spread occurrence and existence, the Fibonacci series and the Rule of Golden Proportions has not been widely documented in the human body. This paper serves to review the observed documentation of the Fibonacci sequence in the human body.
Resumo:
The municipal management in any country of the globe requires planning and allocation of resources evenly. In Brazil, the Law of Budgetary Guidelines (LDO) guides municipal managers toward that balance. This research develops a model that seeks to find the balance of the allocation of public resources in Brazilian municipalities, considering the LDO as a parameter. For this using statistical techniques and multicriteria analysis as a first step in order to define allocation strategies, based on the technical aspects arising from the municipal manager. In a second step, presented in linear programming based optimization where the objective function is derived from the preference of the results of the manager and his staff. The statistical representation is presented to support multicriteria development in the definition of replacement rates through time series. The multicriteria analysis was structured by defining the criteria, alternatives and the application of UTASTAR methods to calculate replacement rates. After these initial settings, an application of linear programming was developed to find the optimal allocation of enforcement resources of the municipal budget. Data from the budget of a municipality in southwestern Paraná were studied in the application of the model and analysis of results.
Resumo:
Classical regression analysis can be used to model time series. However, the assumption that model parameters are constant over time is not necessarily adapted to the data. In phytoplankton ecology, the relevance of time-varying parameter values has been shown using a dynamic linear regression model (DLRM). DLRMs, belonging to the class of Bayesian dynamic models, assume the existence of a non-observable time series of model parameters, which are estimated on-line, i.e. after each observation. The aim of this paper was to show how DLRM results could be used to explain variation of a time series of phytoplankton abundance. We applied DLRM to daily concentrations of Dinophysis cf. acuminata, determined in Antifer harbour (French coast of the English Channel), along with physical and chemical covariates (e.g. wind velocity, nutrient concentrations). A single model was built using 1989 and 1990 data, and then applied separately to each year. Equivalent static regression models were investigated for the purpose of comparison. Results showed that most of the Dinophysis cf. acuminata concentration variability was explained by the configuration of the sampling site, the wind regime and tide residual flow. Moreover, the relationships of these factors with the concentration of the microalga varied with time, a fact that could not be detected with static regression. Application of dynamic models to phytoplankton time series, especially in a monitoring context, is discussed.
Resumo:
Bahadur representation and its applications have attracted a large number of publications and presentations on a wide variety of problems. Mixing dependency is weak enough to describe the dependent structure of random variables, including observations in time series and longitudinal studies. This note proves the Bahadur representation of sample quantiles for strongly mixing random variables (including ½-mixing and Á-mixing) under very weak mixing coe±cients. As application, the asymptotic normality is derived. These results greatly improves those recently reported in literature.
Resumo:
This study focuses on multiple linear regression models relating six climate indices (temperature humidity THI, environmental stress ESI, equivalent temperature index ETI, heat load HLI, modified HLI (HLI new), and respiratory rate predictor RRP) with three main components of cow’s milk (yield, fat, and protein) for cows in Iran. The least absolute shrinkage selection operator (LASSO) and the Akaike information criterion (AIC) techniques are applied to select the best model for milk predictands with the smallest number of climate predictors. Uncertainty estimation is employed by applying bootstrapping through resampling. Cross validation is used to avoid over-fitting. Climatic parameters are calculated from the NASA-MERRA global atmospheric reanalysis. Milk data for the months from April to September, 2002 to 2010 are used. The best linear regression models are found in spring between milk yield as the predictand and THI, ESI, ETI, HLI, and RRP as predictors with p-value < 0.001 and R2 (0.50, 0.49) respectively. In summer, milk yield with independent variables of THI, ETI, and ESI show the highest relation (p-value < 0.001) with R2 (0.69). For fat and protein the results are only marginal. This method is suggested for the impact studies of climate variability/change on agriculture and food science fields when short-time series or data with large uncertainty are available.
Resumo:
Nesta dissertação estudámos as séries temporais que representam a complexa dinâmica do comportamento. Demos especial atenção às técnicas de dinâmica não linear. As técnicas fornecem-nos uma quantidade de índices quantitativos que servem para descrever as propriedades dinâmicas do sistema. Estes índices têm sido intensivamente usados nos últimos anos em aplicações práticas em Psicologia. Estudámos alguns conceitos básicos de dinâmica não linear, as características dos sistemas caóticos e algumas grandezas que caracterizam os sistemas dinâmicos, que incluem a dimensão fractal, que indica a complexidade de informação contida na série temporal, os expoentes de Lyapunov, que indicam a taxa com que pontos arbitrariamente próximos no espaço de fases da representação do espaço dinâmico, divergem ao longo do tempo, ou a entropia aproximada, que mede o grau de imprevisibilidade de uma série temporal. Esta informação pode então ser usada para compreender, e possivelmente prever, o comportamento. ABSTRACT: ln this thesis we studied the time series that represent the complex dynamic behavior. We focused on techniques of nonlinear dynamics. The techniques provide us a number of quantitative indices used to describe the dynamic properties of the system. These indices have been extensively used in recent years in practical applications in psychology. We studied some basic concepts of nonlinear dynamics, the characteristics of chaotic systems and some quantities that characterize the dynamic systems, including fractal dimension, indicating the complexity of information in the series, the Lyapunov exponents, which indicate the rate at that arbitrarily dose points in phase space representation of a dynamic, vary over time, or the approximate entropy, which measures the degree of unpredictability of a series. This information can then be used to understand and possibly predict the behavior.
Resumo:
The surface of the Earth is subjected to vertical deformations caused by geophysical and geological processes which can be monitored by Global Positioning System (GPS) observations. The purpose of this work is to investigate GPS height time series to identify interannual signals affecting the Earth’s surface over the European and Mediterranean area, during the period 2001-2019. Thirty-six homogeneously distributed GPS stations were selected from the online dataset made available by the Nevada Geodetic Laboratory (NGL) on the basis of the length and quality of the data series. The Principal Component Analysis (PCA) is the technique applied to extract the main patterns of the space and time variability of the GPS Up coordinate. The time series were studied by means of a frequency analysis using a periodogram and the real-valued Morlet wavelet. The periodogram is used to identify the dominant frequencies and the spectral density of the investigated signals; the second one is applied to identify the signals in the time domain and the relevant periodicities. This study has identified, over European and Mediterranean area, the presence of interannual non-linear signals with a period of 2-to-4 years, possibly related to atmospheric and hydrological loading displacements and to climate phenomena, such as El Niño Southern Oscillation (ENSO). A clear signal with a period of about six years is present in the vertical component of the GPS time series, likely explainable by the gravitational coupling between the Earth’s mantle and the inner core. Moreover, signals with a period in the order of 8-9 years, might be explained by mantle-inner core gravity coupling and the cycle of the lunar perigee, and a signal of 18.6 years, likely associated to lunar nodal cycle, were identified through the wavelet spectrum. However, these last two signals need further confirmation because the present length of the GPS time series is still too short when compared to the periods involved.
Resumo:
This study investigated the effect of simulated microwave disinfection (SMD) on the linear dimensional changes, hardness and impact strength of acrylic resins under different polymerization cycles. Metal dies with referential points were embedded in flasks with dental stone. Samples of Classico and Vipi acrylic resins were made following the manufacturers' recommendations. The assessed polymerization cycles were: A-- water bath at 74ºC for 9 h; B-- water bath at 74ºC for 8 h and temperature increased to 100ºC for 1 h; C-- water bath at 74ºC for 2 h and temperature increased to 100ºC for 1 h;; and D-- water bath at 120ºC and pressure of 60 pounds. Linear dimensional distances in length and width were measured after SMD and water storage at 37ºC for 7 and 30 days using an optical microscope. SMD was carried out with the samples immersed in 150 mL of water in an oven (650 W for 3 min). A load of 25 gf for 10 sec was used in the hardness test. Charpy impact test was performed with 40 kpcm. Data were submitted to ANOVA and Tukey's test (5%). The Classico resin was dimensionally steady in length in the A and D cycles for all periods, while the Vipi resin was steady in the A, B and C cycles for all periods. The Classico resin was dimensionally steady in width in the C and D cycles for all periods, and the Vipi resin was steady in all cycles and periods. The hardness values for Classico resin were steady in all cycles and periods, while the Vipi resin was steady only in the C cycle for all periods. Impact strength values for Classico resin were steady in the A, C and D cycles for all periods, while Vipi resin was steady in all cycles and periods. SMD promoted different effects on the linear dimensional changes, hardness and impact strength of acrylic resins submitted to different polymerization cycles when after SMD and water storage were considered.
Resumo:
This study investigated the effect of simulated microwave disinfection (SMD) on the linear dimensional changes, hardness and impact strength of acrylic resins under different polymerization cycles. Metal dies with referential points were embedded in flasks with dental stone. Samples of Classico and Vipi acrylic resins were made following the manufacturers' recommendations. The assessed polymerization cycles were: A) water bath at 74 ºC for 9 h; B) water bath at 74 ºC for 8 h and temperature increased to 100 ºC for 1 h; C) water bath at 74 ºC for 2 h and temperature increased to 100 ºC for 1 h; and D) water bath at 120 ºC and pressure of 60 pounds. Linear dimensional distances in length and width were measured after SMD and water storage at 37 ºC for 7 and 30 days using an optical microscope. SMD was carried out with the samples immersed in 150 mL of water in an oven (650 W for 3 min). A load of 25 gf for 10 s was used in the hardness test. Charpy impact test was performed with 40 kpcm. Data were submitted to ANOVA and Tukey's test (5%). The Classico resin was dimensionally steady in length in the A and D cycles for all periods, while the Vipi resin was steady in the A, B and C cycles for all periods. The Classico resin was dimensionally steady in width in the C and D cycles for all periods, and the Vipi resin was steady in all cycles and periods. The hardness values for Classico resin were steady in all cycles and periods, while the Vipi resin was steady only in the C cycle for all periods. Impact strength values for Classico resin were steady in the A, C and D cycles for all periods, while Vipi resin was steady in all cycles and periods. SMD promoted different effects on the linear dimensional changes, hardness and impact strength of acrylic resins submitted to different polymerization cycles when after SMD and water storage were considered.
Resumo:
In acquired immunodeficiency syndrome (AIDS) studies it is quite common to observe viral load measurements collected irregularly over time. Moreover, these measurements can be subjected to some upper and/or lower detection limits depending on the quantification assays. A complication arises when these continuous repeated measures have a heavy-tailed behavior. For such data structures, we propose a robust structure for a censored linear model based on the multivariate Student's t-distribution. To compensate for the autocorrelation existing among irregularly observed measures, a damped exponential correlation structure is employed. An efficient expectation maximization type algorithm is developed for computing the maximum likelihood estimates, obtaining as a by-product the standard errors of the fixed effects and the log-likelihood function. The proposed algorithm uses closed-form expressions at the E-step that rely on formulas for the mean and variance of a truncated multivariate Student's t-distribution. The methodology is illustrated through an application to an Human Immunodeficiency Virus-AIDS (HIV-AIDS) study and several simulation studies.
Resumo:
To describe maternal and neonatal outcomes in pregnant women undergoing hemodialysis in a referral center in Brazilian Southeast side. Retrospective and descriptive study, with chart review of all pregnancies undergoing hemodialysis that were followed-up at an outpatient clinic of high- risk prenatal care in Southeast Brazil. Among the 16 women identified, 2 were excluded due to follow-up loss. In 14 women described, hypertension was the most frequent cause of chronic renal failure (half of cases). The majority (71.4%) had performed hemodialysis treatment for more than one year and all of them underwent 5 to 6 hemodialysis sessions per week. Eleven participants had chronic hypertension, 1 of which was also diabetic, and 6 of them were smokers. Regarding pregnancy complications, 1 of the hypertensive women developed malignant hypertension (with fetal growth restriction and preterm delivery at 29 weeks), 2 had acute pulmonary edema and 2 had abruption placenta. The mode of delivery was cesarean section in 9 women (64.3%). All neonates had Apgar score at five minutes above 7. To improve perinatal and maternal outcomes of women undergoing hemodialysis, it is important to ensure multidisciplinary approach in referral center, strict control of serum urea, hemoglobin and maternal blood pressure, as well as close monitoring of fetal well-being and maternal morbidities. Another important strategy is suitable guidance for contraception in these women.
Resumo:
This study examined the influence of three polymerization cycles (1: heat cure - long cycle; 2: heat cure - short cycle; and 3: microwave activation) on the linear dimensions of three denture base resins, immediately after deflasking, and 30 days after storage in distilled water at 37± 2ºC. The acrylic resins used were: Clássico, Lucitone 550 and Acron MC. The first two resins were submitted to all three polymerization cycles, and the Acron MC resin was cured by microwave activation only. The samples had three marks, and dimensions of 65 mm in length, 10 mm in width and 3 mm in thickness. Twenty-one test specimens were fabricated for each combination of resin and cure cycle, and they were submitted to three linear dimensional evaluations for two positions (A and B). The changes were evaluated using a microscope. The results indicated that all acrylic resins, regardless of the cure cycle, showed increased linear dimension after 30 days of storage in water. The composition of the acrylic resin affected the results more than the cure cycles, and the conventional acrylic resin (Lucitone 550 and Clássico) cured by microwave activation presented similar results when compared with the resin specific for microwave activation.
Resumo:
BACKGROUND: Changes in heart rate during rest-exercise transition can be characterized by the application of mathematical calculations, such as deltas 0-10 and 0-30 seconds to infer on the parasympathetic nervous system and linear regression and delta applied to data range from 60 to 240 seconds to infer on the sympathetic nervous system. The objective of this study was to test the hypothesis that young and middle-aged subjects have different heart rate responses in exercise of moderate and intense intensity, with different mathematical calculations. METHODS: Seven middle-aged men and ten young men apparently healthy were subject to constant load tests (intense and moderate) in cycle ergometer. The heart rate data were submitted to analysis of deltas (0-10, 0-30 and 60-240 seconds) and simple linear regression (60-240 seconds). The parameters obtained from simple linear regression analysis were: intercept and slope angle. We used the Shapiro-Wilk test to check the distribution of data and the t test for unpaired comparisons between groups. The level of statistical significance was 5%. RESULTS: The value of the intercept and delta 0-10 seconds was lower in middle age in two loads tested and the inclination angle was lower in moderate exercise in middle age. CONCLUSION: The young subjects present greater magnitude of vagal withdrawal in the initial stage of the HR response during constant load exercise and higher speed of adjustment of sympathetic response in moderate exercise.