934 resultados para Light in art


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes an automatic device for in situ and continuous monitoring of the ageing process occurring in natural and synthetic resins widely used in art and in the conservation and restoration of cultural artefacts. The results of tests carried out under accelerated ageing conditions are also presented. This easy-to-assemble palm-top device, essentially consists of oscillators based on quartz crystal resonators coated with films of the organic materials whose response to environmental stress is to be addressed. The device contains a microcontroller which selects at pre-defined time intervals the oscillators and records and stores their oscillation frequency. The ageing of the coatings, caused by the environmental stress and resulting in a shift in the oscillation frequency of the modified crystals, can be straightforwardly monitored in this way. The kinetics of this process reflects the level of risk damage associated with a specific microenvironment. In this case, natural and artificial resins, broadly employed in art and restoration of artistic and archaeological artefacts (dammar and Paraloid B72), were applied onto the crystals. The environmental stress was represented by visible and UV radiation, since the chosen materials are known to be photochemically active, to different extents. In the case of dammar, the results obtained are consistent with previous data obtained using a bench-top equipment by impedance analysis through discrete measurements and confirm that the ageing of this material is reflected in the gravimetric response of the modified quartz crystals. As for Paraloid B72, the outcome of the assays indicates that the resin is resistant to visible light, but is very sensitive to UV irradiation. The use of a continuous monitoring system, apart from being obviously more practical, is essential to identify short-term (i.e. reversible) events, like water vapour adsorption/desorption processes, and to highlight ageing trends or sudden changes of such trends. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This catalog describes paintings by the author, completed as his Senior Scholar Project in art and exhibited in the Colby College Art Museum. Images of the paintings are not available.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays the real contribution of light on the acceleration of the chemical reaction for the dental bleaching is under incredulity, mostly because the real mechanisms of its contribution still are obscure. Objectives: Determine the influence of pigment of three colored bleaching gels in the light distribution and absorption in the teeth, to accomplish that, we have used in this experiment bovine teeth and three colored bleaching gels. It is well Known that the dark molecules absorb light and increase the local temperature upraising the bleaching rate, these molecules are located in the interface between the enamel and dentin. Methods: This study was realized using an argon laser with 455nm with 150mW of intensity and a LED with the same characteristics, three colored gels (green, blue and red) and to realize the capture of the digital images it was used a CCD camera connected to a PC. The images were processed in a mathematical environment (MATHLAB, R12 (R)). Results: The obtained results show that the color of the bleaching gel influences significantly the absorption of light in the specific sites of the teeth. Conclusions: This poor absorption can be one of the major factors involved with the incredulity of the light contribution on the process that can be observed in the literature nowadays.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relation between the intercepted light and orchard productivity was considered linear, although this dependence seems to be more subordinate to planting system rather than light intensity. At whole plant level not always the increase of irradiance determines productivity improvement. One of the reasons can be the plant intrinsic un-efficiency in using energy. Generally in full light only the 5 – 10% of the total incoming energy is allocated to net photosynthesis. Therefore preserving or improving this efficiency becomes pivotal for scientist and fruit growers. Even tough a conspicuous energy amount is reflected or transmitted, plants can not avoid to absorb photons in excess. The chlorophyll over-excitation promotes the reactive species production increasing the photoinhibition risks. The dangerous consequences of photoinhibition forced plants to evolve a complex and multilevel machine able to dissipate the energy excess quenching heat (Non Photochemical Quenching), moving electrons (water-water cycle , cyclic transport around PSI, glutathione-ascorbate cycle and photorespiration) and scavenging the generated reactive species. The price plants must pay for this equipment is the use of CO2 and reducing power with a consequent decrease of the photosynthetic efficiency, both because some photons are not used for carboxylation and an effective CO2 and reducing power loss occurs. Net photosynthesis increases with light until the saturation point, additional PPFD doesn’t improve carboxylation but it rises the efficiency of the alternative pathways in energy dissipation but also ROS production and photoinhibition risks. The wide photo-protective apparatus, although is not able to cope with the excessive incoming energy, therefore photodamage occurs. Each event increasing the photon pressure and/or decreasing the efficiency of the described photo-protective mechanisms (i.e. thermal stress, water and nutritional deficiency) can emphasize the photoinhibition. Likely in nature a small amount of not damaged photosystems is found because of the effective, efficient and energy consuming recovery system. Since the damaged PSII is quickly repaired with energy expense, it would be interesting to investigate how much PSII recovery costs to plant productivity. This PhD. dissertation purposes to improve the knowledge about the several strategies accomplished for managing the incoming energy and the light excess implication on photo-damage in peach. The thesis is organized in three scientific units. In the first section a new rapid, non-intrusive, whole tissue and universal technique for functional PSII determination was implemented and validated on different kinds of plants as C3 and C4 species, woody and herbaceous plants, wild type and Chlorophyll b-less mutant and monocot and dicot plants. In the second unit, using a “singular” experimental orchard named “Asymmetric orchard”, the relation between light environment and photosynthetic performance, water use and photoinhibition was investigated in peach at whole plant level, furthermore the effect of photon pressure variation on energy management was considered on single leaf. In the third section the quenching analysis method suggested by Kornyeyev and Hendrickson (2007) was validate on peach. Afterwards it was applied in the field where the influence of moderate light and water reduction on peach photosynthetic performances, water requirements, energy management and photoinhibition was studied. Using solar energy as fuel for life plant is intrinsically suicidal since the high constant photodamage risk. This dissertation would try to highlight the complex relation existing between plant, in particular peach, and light analysing the principal strategies plants developed to manage the incoming light for deriving the maximal benefits as possible minimizing the risks. In the first instance the new method proposed for functional PSII determination based on P700 redox kinetics seems to be a valid, non intrusive, universal and field-applicable technique, even because it is able to measure in deep the whole leaf tissue rather than the first leaf layers as fluorescence. Fluorescence Fv/Fm parameter gives a good estimate of functional PSII but only when data obtained by ad-axial and ab-axial leaf surface are averaged. In addition to this method the energy quenching analysis proposed by Kornyeyev and Hendrickson (2007), combined with the photosynthesis model proposed by von Caemmerer (2000) is a forceful tool to analyse and study, even in the field, the relation between plant and environmental factors such as water, temperature but first of all light. “Asymmetric” training system is a good way to study light energy, photosynthetic performance and water use relations in the field. At whole plant level net carboxylation increases with PPFD reaching a saturating point. Light excess rather than improve photosynthesis may emphasize water and thermal stress leading to stomatal limitation. Furthermore too much light does not promote net carboxylation improvement but PSII damage, in fact in the most light exposed plants about 50-60% of the total PSII is inactivated. At single leaf level, net carboxylation increases till saturation point (1000 – 1200 μmolm-2s-1) and light excess is dissipated by non photochemical quenching and non net carboxylative transports. The latter follows a quite similar pattern of Pn/PPFD curve reaching the saturation point at almost the same photon flux density. At middle-low irradiance NPQ seems to be lumen pH limited because the incoming photon pressure is not enough to generate the optimum lumen pH for violaxanthin de-epoxidase (VDE) full activation. Peach leaves try to cope with the light excess increasing the non net carboxylative transports. While PPFD rises the xanthophyll cycle is more and more activated and the rate of non net carboxylative transports is reduced. Some of these alternative transports, such as the water-water cycle, the cyclic transport around the PSI and the glutathione-ascorbate cycle are able to generate additional H+ in lumen in order to support the VDE activation when light can be limiting. Moreover the alternative transports seems to be involved as an important dissipative way when high temperature and sub-optimal conductance emphasize the photoinhibition risks. In peach, a moderate water and light reduction does not determine net carboxylation decrease but, diminishing the incoming light and the environmental evapo-transpiration request, stomatal conductance decreases, improving water use efficiency. Therefore lowering light intensity till not limiting levels, water could be saved not compromising net photosynthesis. The quenching analysis is able to partition absorbed energy in the several utilization, photoprotection and photo-oxidation pathways. When recovery is permitted only few PSII remained un-repaired, although more net PSII damage is recorded in plants placed in full light. Even in this experiment, in over saturating light the main dissipation pathway is the non photochemical quenching; at middle-low irradiance it seems to be pH limited and other transports, such as photorespiration and alternative transports, are used to support photoprotection and to contribute for creating the optimal trans-thylakoidal ΔpH for violaxanthin de-epoxidase. These alternative pathways become the main quenching mechanisms at very low light environment. Another aspect pointed out by this study is the role of NPQ as dissipative pathway when conductance becomes severely limiting. The evidence that in nature a small amount of damaged PSII is seen indicates the presence of an effective and efficient recovery mechanism that masks the real photodamage occurring during the day. At single leaf level, when repair is not allowed leaves in full light are two fold more photoinhibited than the shaded ones. Therefore light in excess of the photosynthetic optima does not promote net carboxylation but increases water loss and PSII damage. The more is photoinhibition the more must be the photosystems to be repaired and consequently the energy and dry matter to allocate in this essential activity. Since above the saturation point net photosynthesis is constant while photoinhibition increases it would be interesting to investigate how photodamage costs in terms of tree productivity. An other aspect of pivotal importance to be further widened is the combined influence of light and other environmental parameters, like water status, temperature and nutrition on peach light, water and phtosyntate management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examined the effect of switching to second-line antiretroviral therapy (ART) on mortality in patients who experienced immunological failure in ART programmes without access to routine viral load monitoring in sub-Saharan Africa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Color light therapy is a therapeutic method in complementary medicine. In color therapy, light of two contrasting colors is often applied in a sequential order. The aim of this study was to investigate possible physiological effects, i.e., changes in the blood volume and oxygenation in the brain and calf muscle of healthy subjects who were exposed to red and blue light in sequential order. The hypothesis was that if a subject is first exposed to blue and then red light, the effect of the red light will be enhanced due to the contrastingly different characteristics of the two colors. The same was expected for blue light, if first exposing a subject to red and then to blue light. Twelve healthy volunteers (six male, six female) were measured twice on two different days by near-infrared spectroscopy during exposure to colored light. Two sequences of colored light were applied in a controlled, randomized, crossover design: first blue, then red, and vice versa. For the brain and muscle, the results showed no significant differences in blood volume and oxygenation between the two sequences, and a high interindividual physiological variability. Thus, the hypothesis had to be rejected. Comparing these data to results from a previous study, where subjects were exposed to blue and red light without sequential color changes, shows that the results of the current study appear to be similar to those of red light exposure. This may indicate that the exposure to red light was preponderant and thus effects of blue light were outweighed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Antiretroviral therapy (ART) may induce metabolic changes and increase the risk of coronary heart disease (CHD). Based on a health care system approach, we investigated predictors for normalization of dyslipidemia in HIV-infected individuals receiving ART. METHOD: Individuals included in the study were registered in the Swiss HIV Cohort Study (SHCS), had dyslipidemia but were not on lipid-lowering medication, were on potent ART for >or= 3 months, and had >or= 2 follow-up visits. Dyslipidemia was defined as two consecutive total cholesterol (TC) values above recommended levels. Predictors of achieving treatment goals for TC were assessed using Cox models. RESULTS: Analysis included 958 individuals with median followup of 2.3 years (IQR 1.2-4.0). 454 patients (47.4%) achieved TC treatment goals. In adjusted analyses, variables significantly associated with a lower hazard of reaching TC treatment goals were as follows: older age (compared to 18-37 year olds: hazard ratio [HR] 0.62 for 45-52 year olds, 95% CI 0.47-0.82; HR 0.40 for 53-85, 95% CI 0.29-0.54), diabetes (HR 0.39, 95% CI 0.26-0.59), history of coronary heart disease (HR 0.27, 95% CI 0.10-0.71), higher baseline TC (HR 0.78, 95% CI 0.71-0.85), baseline triple nucleoside regimen (HR 0.12 compared to PI-only regimen, 95% CI 0.07-0.21), longer time on PI-only regimen (HR 0.39, 95% CI 0.33-0.46), longer time on NNRTI only regimen (HR 0.35, 95% CI 0.29-0.43), and longer time on PI/NNRTI regimen (HR 0.34, 95% CI 0.26-0.43). Switching ART regimen when viral load was undetectable was associated with a higher hazard of reaching TC treatment goals (HR 1.48, 95% CI 1.14-1.91). CONCLUSION: In SHCS participants on ART, several ART-related and not ART-related epidemiological factors were associated with insufficient control of dyslipidemia. Control of dyslipidemia in ART recipients must be further improved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Alcohol consumption leading to morbidity and mortality affects HIV-infected individuals. Here, we aimed to study self-reported alcohol consumption and to determine its association with adherence to antiretroviral therapy (ART) and HIV surrogate markers. METHODS: Cross-sectional data on daily alcohol consumption from August 2005 to August 2007 were analysed and categorized according to the World Health Organization definition (light, moderate or severe health risk). Multivariate logistic regression models and Pearson's chi(2) statistics were used to test the influence of alcohol use on endpoints. RESULTS: Of 6,323 individuals, 52.3% consumed alcohol less than once a week in the past 6 months. Alcohol intake was deemed light in 39.9%, moderate in 5.0% and severe in 2.8%. Higher alcohol consumption was significantly associated with older age, less education, injection drug use, being in a drug maintenance programme, psychiatric treatment, hepatitis C virus coinfection and with a longer time since diagnosis of HIV. Lower alcohol consumption was found in males, non-Caucasians, individuals currently on ART and those with more ART experience. In patients on ART (n=4,519), missed doses and alcohol consumption were positively correlated (P<0.001). Severe alcohol consumers, who were pretreated with ART, were more often off treatment despite having CD4+ T-cell count <200 cells/microl; however, severe alcohol consumption per se did not delay starting ART. In treated individuals, alcohol consumption was not associated with worse HIV surrogate markers. CONCLUSIONS: Higher alcohol consumption in HIV-infected individuals was associated with several psychosocial and demographic factors, non-adherence to ART and, in pretreated individuals, being off treatment despite low CD4+ T-cell counts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND The use of combination antiretroviral therapy (cART) comprising three antiretroviral medications from at least two classes of drugs is the current standard treatment for HIV infection in adults and children. Current World Health Organization (WHO) guidelines for antiretroviral therapy recommend early treatment regardless of immunologic thresholds or the clinical condition for all infants (less than one years of age) and children under the age of two years. For children aged two to five years current WHO guidelines recommend (based on low quality evidence) that clinical and immunological thresholds be used to identify those who need to start cART (advanced clinical stage or CD4 counts ≤ 750 cells/mm(3) or per cent CD4 ≤ 25%). This Cochrane review will inform the current available evidence regarding the optimal time for treatment initiation in children aged two to five years with the goal of informing the revision of WHO 2013 recommendations on when to initiate cART in children. OBJECTIVES To assess the evidence for the optimal time to initiate cART in treatment-naive, HIV-infected children aged 2 to 5 years. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, the AEGIS conference database, specific relevant conferences, www.clinicaltrials.gov, the World Health Organization International Clinical Trials Registry platform and reference lists of articles. The date of the most recent search was 30 September 2012. SELECTION CRITERIA Randomised controlled trials (RCTs) that compared immediate with deferred initiation of cART, and prospective cohort studies which followed children from enrolment to start of cART and on cART. DATA COLLECTION AND ANALYSIS Two review authors considered studies for inclusion in the review, assessed the risk of bias, and extracted data on the primary outcome of death from all causes and several secondary outcomes, including incidence of CDC category C and B clinical events and per cent CD4 cells (CD4%) at study end. For RCTs we calculated relative risks (RR) or mean differences with 95% confidence intervals (95% CI). For cohort data, we extracted relative risks with 95% CI from adjusted analyses. We combined results from RCTs using a random effects model and examined statistical heterogeneity. MAIN RESULTS Two RCTs in HIV-positive children aged 1 to 12 years were identified. One trial was the pilot study for the larger second trial and both compared initiation of cART regardless of clinical-immunological conditions with deferred initiation until per cent CD4 dropped to <15%. The two trials were conducted in Thailand, and Thailand and Cambodia, respectively. Unpublished analyses of the 122 children enrolled at ages 2 to 5 years were included in this review. There was one death in the immediate cART group and no deaths in the deferred group (RR 2.9; 95% CI 0.12 to 68.9). In the subgroup analysis of children aged 24 to 59 months, there was one CDC C event in each group (RR 0.96; 95% CI 0.06 to 14.87) and 8 and 11 CDC B events in the immediate and deferred groups respectively (RR 0.95; 95% CI 0.24 to 3.73). In this subgroup, the mean difference in CD4 per cent at study end was 5.9% (95% CI 2.7 to 9.1). One cohort study from South Africa, which compared the effect of delaying cART for up to 60 days in 573 HIV-positive children starting tuberculosis treatment (median age 3.5 years), was also included. The adjusted hazard ratios for the effect on mortality of delaying ART for more than 60 days was 1.32 (95% CI 0.55 to 3.16). AUTHORS' CONCLUSIONS This systematic review shows that there is insufficient evidence from clinical trials in support of either early or CD4-guided initiation of ART in HIV-infected children aged 2 to 5 years. Programmatic issues such as the retention in care of children in ART programmes in resource-limited settings will need to be considered when formulating WHO 2013 recommendations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intact chloroplasts were isolated from mature pea (Pisum sativum L.) leaves in order to study the degradation of several stromal proteins in organello. Changes in the abundances of ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39), phosphoribulokinase (EC 2.7.1.19), glutamine synthetase (EC 6.3.1.2) and ferredoxin-dependent glutamine:α-ketoglutarate aminotransferase (glutamate synthase; EC 1.4.7.1) were detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by Coomassie-staining of the gels or immunoblotting using specific antibodies for the different enzymes. Degradation of several stromal proteins was strongly stimulated when intact chloroplasts were incubated in the light in the presence of dithiothreitol. Since free radicals may artificially accumulate in the chloroplast under such conditions and interfere with the stability of stromal proteins, the general relevance of these processes remains questionable. In the absence of light, proteolysis proceeded slowly in isolated chloroplasts and was not stimulated by dithiothreitol. Inhibition by ethylenediaminetetraacetic acid (EDTA), 1,10-phenanthroline or excess zinc ions as well as the requirement for divalent cations suggested that a zinc-containing metalloprotease participated in this process. Furthermore, light-independent degradation of ribulose-1,5-bisphosphate carboxylase/oxygenase and phosphoribulokinase was enhanced in chloroplasts isolated from leaves in which senescence was accelerated by nitrogen starvation. Our results indicate that light-independent stromal protein degradation in intact chloroplasts may be analogous to proteolysis that occurs in intact leaves during senescence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This doctoral thesis explores some of the possibilities that near-field optics can bring to photovoltaics, and in particular to quantum-dot intermediate band solar cells (QD-IBSCs). Our main focus is the analytical optimization of the electric field distribution produced in the vicinity of single scattering particles, in order to produce the highest possible absorption enhancement in the photovoltaic medium in their surroundings. Near-field scattering structures have also been fabricated in laboratory, allowing the application of the previously studied theoretical concepts to real devices. We start by looking into the electrostatic scattering regime, which is only applicable to sub-wavelength sized particles. In this regime it was found that metallic nano-spheroids can produce absorption enhancements of about two orders of magnitude on the material in their vicinity, due to their strong plasmonic resonance. The frequency of such resonance can be tuned with the shape of the particles, allowing us to match it with the optimal transition energies of the intermediate band material. Since these metallic nanoparticles (MNPs) are to be inserted inside the cell photovoltaic medium, they should be coated by a thin insulating layer to prevent electron-hole recombination at their surface. This analysis is then generalized, using an analytical separation-of-variables method implemented in Mathematica7.0, to compute scattering by spheroids of any size and material. This code allowed the study of the scattering properties of wavelengthsized particles (mesoscopic regime), and it was verified that in this regime dielectric spheroids perform better than metallic. The light intensity scattered from such dielectric spheroids can have more than two orders of magnitude than the incident intensity, and the focal region in front of the particle can be shaped in several ways by changing the particle geometry and/or material. Experimental work was also performed in this PhD to implement in practice the concepts studied in the analysis of sub-wavelength MNPs. A wet-coating method was developed to self-assemble regular arrays of colloidal MNPs on the surface of several materials, such as silicon wafers, amorphous silicon films, gallium arsenide and glass. A series of thermal and chemical tests have been performed showing what treatments the nanoparticles can withstand for their embedment in a photovoltaic medium. MNPs arrays are then inserted in an amorphous silicon medium to study the effect of their plasmonic near-field enhancement on the absorption spectrum of the material. The self-assembled arrays of MNPs constructed in these experiments inspired a new strategy for fabricating IBSCs using colloidal quantum dots (CQDs). Such CQDs can be deposited in self-assembled monolayers, using procedures similar to those developed for the patterning of colloidal MNPs. The use of CQDs to form the intermediate band presents several important practical and physical advantages relative to the conventional dots epitaxially grown by the Stranski-Krastanov method. Besides, this provides a fast and inexpensive method for patterning binary arrays of QDs and MNPs, envisioned in the theoretical part of this thesis, in which the MNPs act as antennas focusing the light in the QDs and therefore boosting their absorption

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordination between the activities of organelles and the nucleus requires the exchange of signals. Using Chlamydomonas, we provide evidence that plastid-derived chlorophyll precursors may replace light in the induction of two nuclear heat-shock genes (HSP70A and HSP70B) and thus qualify as plastidic signal. Mutants defective in the synthesis of Mg-protoporphyrin IX were no longer inducible by light. Feeding of Mg-protoporphyrin IX or its dimethyl ester to wild-type or mutant cells in the dark resulted in induction. The analysis of HSP70A promoter mutants that do or do not respond to light revealed that these chlorophyll precursors specifically activate the light signaling pathway. Activation of gene expression was not observed when protoporphyrin IX, protochlorophyllide, or chlorophyllide were added. A specific interaction of defined chlorophyll precursors with factor(s) that regulate nuclear gene expression is suggested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Noninvasive, ion-selective vibrating microelectrodes were used to measure the kinetics of H+, Ca2+, K+, and Cl− fluxes and the changes in their concentrations caused by illumination near the mesophyll and attached epidermis of bean (Vicia faba L.). These flux measurements were related to light-induced changes in the plasma membrane potential. The influx of Ca2+ was the main depolarizing agent in electrical responses to light in the mesophyll. Changes in the net fluxes of H+, K+, and Cl− occurred only after a significant delay of about 2 min, whereas light-stimulated influx of Ca2+ began within the time resolution of our measurements (5 s). In the absence of H+ flux, light caused an initial quick rise of external pH near the mesophyll and epidermal tissues. In the mesophyll this fast alkalinization was followed by slower, oscillatory pH changes (5–15 min); in the epidermis the external pH increased steadily and reached a plateau 3 min later. We explain the initial alkalinization of the medium as a result of CO2 uptake by photosynthesizing tissue, whereas activation of the plasma membrane H+ pump occurred 1.5 to 2 min later. The epidermal layer seems to be a substantial barrier for ion fluxes but not for CO2 diffusion into the leaf.