970 resultados para Ligand-based methodologies
Resumo:
BACKGROUND Functional brain images such as Single-Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) have been widely used to guide the clinicians in the Alzheimer's Disease (AD) diagnosis. However, the subjectivity involved in their evaluation has favoured the development of Computer Aided Diagnosis (CAD) Systems. METHODS It is proposed a novel combination of feature extraction techniques to improve the diagnosis of AD. Firstly, Regions of Interest (ROIs) are selected by means of a t-test carried out on 3D Normalised Mean Square Error (NMSE) features restricted to be located within a predefined brain activation mask. In order to address the small sample-size problem, the dimension of the feature space was further reduced by: Large Margin Nearest Neighbours using a rectangular matrix (LMNN-RECT), Principal Component Analysis (PCA) or Partial Least Squares (PLS) (the two latter also analysed with a LMNN transformation). Regarding the classifiers, kernel Support Vector Machines (SVMs) and LMNN using Euclidean, Mahalanobis and Energy-based metrics were compared. RESULTS Several experiments were conducted in order to evaluate the proposed LMNN-based feature extraction algorithms and its benefits as: i) linear transformation of the PLS or PCA reduced data, ii) feature reduction technique, and iii) classifier (with Euclidean, Mahalanobis or Energy-based methodology). The system was evaluated by means of k-fold cross-validation yielding accuracy, sensitivity and specificity values of 92.78%, 91.07% and 95.12% (for SPECT) and 90.67%, 88% and 93.33% (for PET), respectively, when a NMSE-PLS-LMNN feature extraction method was used in combination with a SVM classifier, thus outperforming recently reported baseline methods. CONCLUSIONS All the proposed methods turned out to be a valid solution for the presented problem. One of the advances is the robustness of the LMNN algorithm that not only provides higher separation rate between the classes but it also makes (in combination with NMSE and PLS) this rate variation more stable. In addition, their generalization ability is another advance since several experiments were performed on two image modalities (SPECT and PET).
Resumo:
The impact of the adequacy of empirical therapy on outcome for patients with bloodstream infections (BSI) is key for determining whether adequate empirical coverage should be prioritized over other, more conservative approaches. Recent systematic reviews outlined the need for new studies in the field, using improved methodologies. We assessed the impact of inadequate empirical treatment on the mortality of patients with BSI in the present-day context, incorporating recent methodological recommendations. A prospective multicenter cohort including all BSI episodes in adult patients was performed in 15 hospitals in Andalucía, Spain, over a 2-month period in 2006 to 2007. The main outcome variables were 14- and 30-day mortality. Adjusted analyses were performed by multivariate analysis and propensity score-based matching. Eight hundred one episodes were included. Inadequate empirical therapy was administered in 199 (24.8%) episodes; mortality at days 14 and 30 was 18.55% and 22.6%, respectively. After controlling for age, Charlson index, Pitt score, neutropenia, source, etiology, and presentation with severe sepsis or shock, inadequate empirical treatment was associated with increased mortality at days 14 and 30 (odds ratios [ORs], 2.12 and 1.56; 95% confidence intervals [95% CI], 1.34 to 3.34 and 1.01 to 2.40, respectively). The adjusted ORs after a propensity score-based matched analysis were 3.03 and 1.70 (95% CI, 1.60 to 5.74 and 0.98 to 2.98, respectively). In conclusion, inadequate empirical therapy is independently associated with increased mortality in patients with BSI. Programs to improve the quality of empirical therapy in patients with suspicion of BSI and optimization of definitive therapy should be implemented.
Resumo:
In CoDaWork’05, we presented an application of discriminant function analysis (DFA) to 4 differentcompositional datasets and modelled the first canonical variable using a segmented regression modelsolely based on an observation about the scatter plots. In this paper, multiple linear regressions areapplied to different datasets to confirm the validity of our proposed model. In addition to dating theunknown tephras by calibration as discussed previously, another method of mapping the unknown tephrasinto samples of the reference set or missing samples in between consecutive reference samples isproposed. The application of these methodologies is demonstrated with both simulated and real datasets.This new proposed methodology provides an alternative, more acceptable approach for geologists as theirfocus is on mapping the unknown tephra with relevant eruptive events rather than estimating the age ofunknown tephra.Kew words: Tephrochronology; Segmented regression
Resumo:
The SwissBioisostere database (http://www.swissbioisostere.ch) contains information on molecular replacements and their performance in biochemical assays. It is meant to provide researchers in drug discovery projects with ideas for bioisosteric modifications of their current lead molecule, as well as to give interested scientists access to the details on particular molecular replacements. As of August 2012, the database contains 21 293 355 datapoints corresponding to 5 586 462 unique replacements that have been measured in 35 039 assays against 1948 molecular targets representing 30 target classes. The accessible data were created through detection of matched molecular pairs and mining bioactivity data in the ChEMBL database. The SwissBioisostere database is hosted by the Swiss Institute of Bioinformatics and available via a web-based interface.
Resumo:
One of the most relevant difficulties faced by first-year undergraduate students is to settle into the educational environment of universities. This paper presents a case study that proposes a computer-assisted collaborative experience designed to help students in their transition from high school to university. This is done by facilitating their first contact with the campus and its services, the university community, methodologies and activities. The experience combines individual and collaborative activities, conducted in and out of the classroom, structured following the Jigsaw Collaborative Learning Flow Pattern. A specific environment including portable technologies with network and computer applications has been developed to support and facilitate the orchestration of a flow of learning activities into a single integrated learning setting. The result is a Computer-Supported Collaborative Blended Learning scenario, which has been evaluated with first-year university students of the degrees of Software and Audiovisual Engineering within the subject Introduction to Information and Communications Technologies. The findings reveal that the scenario improves significantly students’ interest in their studies and their understanding about the campus and services provided. The environment is also an innovative approach to successfully support the heterogeneous activities conducted by both teachers and students during the scenario. This paper introduces the goals and context of the case study, describes how the technology was employed to conduct the learning scenario, the evaluation methods and the main results of the experience.
Resumo:
Ligand-gated ion channels of the Cys loop family are receptors for small amine-containing neurotransmitters. Charged amino acids are strongly conserved in the ligand-binding domain of these receptor proteins. To investigate the role of particular residues in ligand binding of the serotonin 5-HT3AS receptor (5-HT3R), glutamate amino acid residues at three different positions, Glu97, Glu224, and Glu235, in the extracellular N-terminal domain were substituted with aspartate and glutamine using site-directed mutagenesis. Wild type and mutant receptor proteins were expressed in HEK293 cells and analyzed by electrophysiology, radioligand binding, fluorescence measurements, and immunochemistry. A structural model of the ligand-binding domain of the 5-HT3R based on the acetylcholine binding protein revealed the position of the mutated amino acids. Our results demonstrate that mutations of Glu97, distant from the ligand-binding site, had little effect on the receptor, whereas mutations Glu224 and Glu235, close to the predicted binding site, are indeed important for ligand binding. Mutations E224Q, E224D, and E235Q decreased EC50 and Kd values 5-20-fold, whereas E235D was functionally expressed at a low level and had a more than 100-fold increased EC50 value. Comparison of the fluorescence properties of a fluorescein-labeled antagonist upon binding to wild type 5-HT3R and E235Q, allowed us to localize Glu235 within a distance of 1 nm around the ligand-binding site, as proposed by our model.
Resumo:
TNF receptor family members fused to the constant domain of immunoglobulin G have been widely used as immunoadhesins in basic in vitro and in vivo research and in some clinical applications. In this study, we assemble soluble, high avidity chimeric receptors on a pentameric scaffold derived from the coiled-coil domain of cartilage oligomeric matrix protein (COMP). The affinity of Fas and CD40 (but not TNFR-1 and TRAIL-R2) to their ligands is increased by fusion to COMP, when compared to the respective Fc chimeras. In functional assays, Fas:COMP was at least 20-fold more active than Fas:Fc at inhibiting the action of sFasL, and CD40:COMP could block CD40L-mediated proliferation of B cells, whereas CD40:Fc could not. In conclusion, members of the TNF receptor family can display high specificity and excellent avidity for their ligands if they are adequately multimerized.
Resumo:
Ligands and receptors of the TNF superfamily are therapeutically relevant targets in a wide range of human diseases. This chapter describes assays based on ELISA, immunoprecipitation, FACS, and reporter cell lines to monitor interactions of tagged receptors and ligands in both soluble and membrane-bound forms using unified detection techniques. A reporter cell assay that is sensitive to ligand oligomerization can identify ligands with high probability of being active on endogenous receptors. Several assays are also suitable to measure the activity of agonist or antagonist antibodies, or to detect interactions with proteoglycans. Finally, self-interaction of membrane-bound receptors can be evidenced using a FRET-based assay. This panel of methods provides a large degree of flexibility to address questions related to the specificity, activation, or inhibition of TNF-TNF receptor interactions in independent assay systems, but does not substitute for further tests in physiologically relevant conditions.
Resumo:
A recombinant baculovirus encoding a single-chain murine major histocompatibility complex class I molecule in which the first three domains of H-2Kd are fused to beta 2-microglobulin (beta 2-m) via a 15-amino acid linker has been isolated and used to infect lepidopteran cells. A soluble, 391-amino acid single-chain H-2Kd (SC-Kd) molecule of 48 kDa was synthesized and glycosylated in insect cells and could be purified in the absence of detergents by affinity chromatography using the anti-H-2Kd monoclonal antibody SF1.1.1.1. We tested the ability of SC-Kd to bind antigenic peptides using a direct binding assay based on photoaffinity labeling. The photoreactive derivative was prepared from the H-2Kd-restricted Plasmodium berghei circumsporozoite protein (P.b. CS) peptide 253-260 (YIPSAEKI), a probe that we had previously shown to be unable to bind to the H-2Kd heavy chain in infected cells in the absence of co-expressed beta 2-microglobulin. SC-Kd expressed in insect cells did not require additional mouse beta 2-m to bind the photoprobe, indicating that the covalently attached beta 2-m could substitute for the free molecule. Similarly, binding of the P.b. CS photoaffinity probe to the purified SC-Kd molecule was unaffected by the addition of exogenous beta 2-m. This is in contrast to H-2KdQ10, a soluble H-2Kd molecule in which beta 2-m is noncovalently bound to the soluble heavy chain, whose ability to bind the photoaffinity probe is greatly enhanced in the presence of an excess of exogenous beta 2-m. The binding of the probe to SC-Kd was allele-specific, since labeling was selectively inhibited only by antigenic peptides known to be presented by the H-2Kd molecule.
Resumo:
The new complex, [Zr(pda)2]n (1, pda2- = N,N'-bis(neo-pentyl)-ortho-phenylenediamide, n = 1 or 2), prepared by the reaction of 2 equiv of pdaLi2 with ZrCl4, reacts rapidly with halogen oxidants to afford the new product ZrX2(disq)2 (3, X = Cl, Br, I; disq- = N,N'-bis(neo-pentyl)-ortho-diiminosemiquinonate) in which each redox-active ligand has been oxidized by one electron. The oxidation products 3a-c have been structurally characterized and display an unusual parallel stacked arrangement of the disq- ligands in the solid state, with a separation of approximately 3 A. Density functional calculations show a bonding-type interaction between the SOMOs of the disq- ligands to form a unique HOMO while the antibonding linear combination forms a unique LUMO. This orbital configuration leads to a closed-shell-singlet ground-state electron configuration (S = 0). Temperature-dependent magnetism measurements indicate a low-lying triplet excited state at approximately 750 cm-1. In solution, 3a-c show strong disq--based absorption bands that are invariant across the halide series. Taken together these spectroscopic measurements provide experimental values for the one- and two-electron energies that characterize the pi-stacked bonding interaction between the two disq- ligands.
Resumo:
Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors controlling the expression of genes involved in lipid homeostasis. PPARs activate gene transcription in response to a variety of compounds including hypolipidemic drugs as well as natural fatty acids. From the plethora of PPAR activators, Scatchard analysis of receptor-ligand interactions has thus far identified only four ligands. These are the chemotactic agent leukotriene B4 and the hypolipidemic drug Wy 14,643 for the alpha-subtype and a prostaglandin J2 metabolite and synthetic antidiabetic thiazolidinediones for the gamma-subtype. Based on the hypothesis that ligand binding to PPAR would induce interactions of the receptor with transcriptional coactivators, we have developed a novel ligand sensor assay, termed coactivator-dependent receptor ligand assay (CARLA). With CARLA we have screened several natural and synthetic candidate ligands and have identified naturally occurring fatty acids and metabolites as well as hypolipidemic drugs as bona fide ligands of the three PPAR subtypes from Xenopus laevis. Our results suggest that PPARs, by their ability to interact with a number of structurally diverse compounds, have acquired unique ligand-binding properties among the superfamily of nuclear receptors that are compatible with their biological activity.
Resumo:
Chloride channels represent a group of targets for major clinical indications. However, molecular screening for chloride channel modulators has proven to be difficult and time-consuming as approaches essentially rely on the use of fluorescent dyes or invasive patch-clamp techniques which do not lend themselves to the screening of large sets of compounds. To address this problem, we have developed a non-invasive optical method, based on digital holographic microcopy (DHM), allowing monitoring of ion channel activity without using any electrode or fluorescent dye. To illustrate this approach, GABA(A) mediated chloride currents have been monitored with DHM. Practically, we show that DHM can non-invasively provide the quantitative determination of transmembrane chloride fluxes mediated by the activation of chloride channels associated with GABA(A) receptors. Indeed through an original algorithm, chloride currents elicited by application of appropriate agonists of the GABA(A) receptor can be derived from the quantitative phase signal recorded with DHM. Finally, chloride currents can be determined and pharmacologically characterized non-invasively simultaneously on a large cellular sampling by DHM.
Resumo:
Protein-ligand docking has made important progress during the last decade and has become a powerful tool for drug development, opening the way to virtual high throughput screening and in silico structure-based ligand design. Despite the flattering picture that has been drawn, recent publications have shown that the docking problem is far from being solved, and that more developments are still needed to achieve high successful prediction rates and accuracy. Introducing an accurate description of the solvation effect upon binding is thought to be essential to achieve this goal. In particular, EADock uses the Generalized Born Molecular Volume 2 (GBMV2) solvent model, which has been shown to reproduce accurately the desolvation energies calculated by solving the Poisson equation. Here, the implementation of the Fast Analytical Continuum Treatment of Solvation (FACTS) as an implicit solvation model in small molecules docking calculations has been assessed using the EADock docking program. Our results strongly support the use of FACTS for docking. The success rates of EADock/FACTS and EADock/GBMV2 are similar, i.e. around 75% for local docking and 65% for blind docking. However, these results come at a much lower computational cost: FACTS is 10 times faster than GBMV2 in calculating the total electrostatic energy, and allows a speed up of EADock by a factor of 4. This study also supports the EADock development strategy relying on the CHARMM package for energy calculations, which enables straightforward implementation and testing of the latest developments in the field of Molecular Modeling.
Resumo:
Recombinant secretory immunoglobulin A containing a bacterial epitope in domain I of the secretory component (SC) moiety can serve as a mucosal delivery vehicle triggering both mucosal and systemic responses (Corthésy, B., Kaufmann, M., Phalipon, A., Peitsch, M., Neutra, M. R., and Kraehenbuhl, J.-P. (1996) J. Biol. Chem. 271, 33670-33677). To load recombinant secretory IgA with multiple B and T epitopes and extend its biological functions, we selected, based on molecular modeling, five surface-exposed sites in domains II and III of murine SC. Loops predicted to be exposed at the surface of SC domains were replaced with the DYKDDDDK octapeptide (FLAG). Another two mutants were obtained with the FLAG inserted in between domains II and III or at the carboxyl terminus of SC. As shown by mass spectrometry, internal substitution of the FLAG into four of the mutants induced the formation of disulfide-linked homodimers. Three of the dimers and two of the monomers from SC mutants could be affinity-purified using an antibody to the FLAG, mapping them as candidates for insertion. FLAG-induced dimerization also occurred with the polymeric immunoglobulin receptor (pIgR) and might reflect the so-far nondemonstrated capacity of the receptor to oligomerize. By co-expressing in COS-7 cells and epithelial Caco-2 cells two pIgR constructs tagged at the carboxyl terminus with hexahistidine or FLAG, we provide the strongest evidence reported to date that the pIgR dimerizes noncovalently in the plasma membrane in the absence of polymeric IgA ligand. The implication of this finding is discussed in terms of IgA transport and specific antibody response at mucosal surfaces.
Resumo:
The use of synthetic combinatorial peptide libraries in positional scanning format (PS-SCL) has emerged recently as an alternative approach for the identification of peptides recognized by T lymphocytes. The choice of both the PS-SCL used for screening experiments and the method used for data analysis are crucial for implementing this approach. With this aim, we tested the recognition of different PS-SCL by a tyrosinase 368-376-specific CTL clone and analyzed the data obtained with a recently developed biometric data analysis based on a model of independent and additive contribution of individual amino acids to peptide antigen recognition. Mixtures defined with amino acids present at the corresponding positions in the native sequence were among the most active for all of the libraries. Somewhat surprisingly, a higher number of native amino acids were identifiable by using amidated COOH-terminal rather than free COOH-terminal PS-SCL. Also, our data clearly indicate that when using PS-SCL longer than optimal, frame shifts occur frequently and should be taken into account. Biometric analysis of the data obtained with the amidated COOH-terminal nonapeptide library allowed the identification of the native ligand as the sequence with the highest score in a public human protein database. However, the adequacy of the PS-SCL data for the identification for the peptide ligand varied depending on the PS-SCL used. Altogether these results provide insight into the potential of PS-SCL for the identification of CTL-defined tumor-derived antigenic sequences and may significantly implement our ability to interpret the results of these analyses.