966 resultados para Learning objectives
Resumo:
OBJECTIVES The generation of learning goals (LGs) that are aligned with learning needs (LNs) is one of the main purposes of formative workplace-based assessment. In this study, we aimed to analyse how often trainer–student pairs identified corresponding LNs in mini-clinical evaluation exercise (mini-CEX) encounters and to what degree these LNs aligned with recorded LGs, taking into account the social environment (e.g. clinic size) in which the mini-CEX was conducted. METHODS Retrospective analyses of adapted mini-CEX forms (trainers’ and students’ assessments) completed by all Year 4 medical students during clerkships were performed. Learning needs were defined by the lowest score(s) assigned to one or more of the mini-CEX domains. Learning goals were categorised qualitatively according to their correspondence with the six mini-CEX domains (e.g. history taking, professionalism). Following descriptive analyses of LNs and LGs, multi-level logistic regression models were used to predict LGs by identified LNs and social context variables. RESULTS A total of 512 trainers and 165 students conducted 1783 mini-CEXs (98% completion rate). Concordantly, trainer–student pairs most often identified LNs in the domains of ‘clinical reasoning’ (23% of 1167 complete forms), ‘organisation/efficiency’ (20%) and ‘physical examination’ (20%). At least one ‘defined’ LG was noted on 313 student forms (18% of 1710). Of the 446 LGs noted in total, the most frequently noted were ‘physical examination’ (49%) and ‘history taking’ (21%). Corresponding LNs as well as social context factors (e.g. clinic size) were found to be predictors of these LGs. CONCLUSIONS Although trainer–student pairs often agreed in the LNs they identified, many assessments did not result in aligned LGs. The sparseness of LGs, their dependency on social context and their partial non-alignment with students’ LNs raise questions about how the full potential of the mini-CEX as not only a ‘diagnostic’ but also an ‘educational’ tool can be exploited.
Resumo:
OBJECTIVES The objectives of the present study were to investigate temporal/spectral sound-feature processing in preschool children (4 to 7 years old) with peripheral hearing loss compared with age-matched controls. The results verified the presence of statistical learning, which was diminished in children with hearing impairments (HIs), and elucidated possible perceptual mediators of speech production. DESIGN Perception and production of the syllables /ba/, /da/, /ta/, and /na/ were recorded in 13 children with normal hearing and 13 children with HI. Perception was assessed physiologically through event-related potentials (ERPs) recorded by EEG in a multifeature mismatch negativity paradigm and behaviorally through a discrimination task. Temporal and spectral features of the ERPs during speech perception were analyzed, and speech production was quantitatively evaluated using speech motor maximum performance tasks. RESULTS Proximal to stimulus onset, children with HI displayed a difference in map topography, indicating diminished statistical learning. In later ERP components, children with HI exhibited reduced amplitudes in the N2 and early parts of the late disciminative negativity components specifically, which are associated with temporal and spectral control mechanisms. Abnormalities of speech perception were only subtly reflected in speech production, as the lone difference found in speech production studies was a mild delay in regulating speech intensity. CONCLUSIONS In addition to previously reported deficits of sound-feature discriminations, the present study results reflect diminished statistical learning in children with HI, which plays an early and important, but so far neglected, role in phonological processing. Furthermore, the lack of corresponding behavioral abnormalities in speech production implies that impaired perceptual capacities do not necessarily translate into productive deficits.
Resumo:
The project outlined throughout this program management plan aims to develop a health-focused student advocacy group in the San Antonio Independent School District (SAISD). At its core, this project will be an opportunity for SAISD students to engage in service-learning, through which they will learn and develop by designing, organizing and participating in meaningful public health service experiences. ^ This program management plan addresses the genuine need for public health community education by using the service-learning model as a framework to engage students to effect change. The plan delineates the process by which the student advocacy group is to be assembled, selection of service-learning project, project objectives, technical objectives, and communication requirements. Ideally, the plan should help to facilitate project coordination, communication, and planning, and to support the direction of resources. The appendices that follow also provide useful tools with which to follow through with project implementation. ^ The plan is about more than providing a tool to educate students about the health issues in their community. It is about providing a way to teach health advocacy and self-interest and encourage civic engagement via public health. Students have the potential to positively effect lasting change among their peers, in their schools and in the community.^
Resumo:
In the educational project described in this paper, new virtual 3D didactical contents have been developed to achieve specific outcomes, within the frame of a new methodology oriented to objectives of the European Higher Education Area directives. The motivation of the project was to serve as a new assessment method, to create a link between new programs of study with the older ones. In this project, new rubrics have been developed to be employed as an objective method of evaluation of specific and transversal outcomes, to accomplish the certification criteria of institutions like ABET (Accreditation Board for Engineering and Technology).
Resumo:
This work describes the design and application of multimedia contents for web technologies-based training in minimally invasive surgery (MIS). The chosen strategy allows knowing the deficiencies of the current training methods so new multimedia contents can cover them. This study is concluded with the definition of three different types of multimedia contents accordingly to the development degree and didactic objectives that they present: Didactic resources are basic contents such as videos or documents that can be enhanced with contributions of users. On the other hand, case reports and didactic units have a defined structure. Didactic resources and case reports provide an informal training while didactic units are included in a more regulated training.
Resumo:
This paper studies feature subset selection in classification using a multiobjective estimation of distribution algorithm. We consider six functions, namely area under ROC curve, sensitivity, specificity, precision, F1 measure and Brier score, for evaluation of feature subsets and as the objectives of the problem. One of the characteristics of these objective functions is the existence of noise in their values that should be appropriately handled during optimization. Our proposed algorithm consists of two major techniques which are specially designed for the feature subset selection problem. The first one is a solution ranking method based on interval values to handle the noise in the objectives of this problem. The second one is a model estimation method for learning a joint probabilistic model of objectives and variables which is used to generate new solutions and advance through the search space. To simplify model estimation, l1 regularized regression is used to select a subset of problem variables before model learning. The proposed algorithm is compared with a well-known ranking method for interval-valued objectives and a standard multiobjective genetic algorithm. Particularly, the effects of the two new techniques are experimentally investigated. The experimental results show that the proposed algorithm is able to obtain comparable or better performance on the tested datasets.
Resumo:
Probabilistic modeling is the de�ning characteristic of estimation of distribution algorithms (EDAs) which determines their behavior and performance in optimization. Regularization is a well-known statistical technique used for obtaining an improved model by reducing the generalization error of estimation, especially in high-dimensional problems. `1-regularization is a type of this technique with the appealing variable selection property which results in sparse model estimations. In this thesis, we study the use of regularization techniques for model learning in EDAs. Several methods for regularized model estimation in continuous domains based on a Gaussian distribution assumption are presented, and analyzed from di�erent aspects when used for optimization in a high-dimensional setting, where the population size of EDA has a logarithmic scale with respect to the number of variables. The optimization results obtained for a number of continuous problems with an increasing number of variables show that the proposed EDA based on regularized model estimation performs a more robust optimization, and is able to achieve signi�cantly better results for larger dimensions than other Gaussian-based EDAs. We also propose a method for learning a marginally factorized Gaussian Markov random �eld model using regularization techniques and a clustering algorithm. The experimental results show notable optimization performance on continuous additively decomposable problems when using this model estimation method. Our study also covers multi-objective optimization and we propose joint probabilistic modeling of variables and objectives in EDAs based on Bayesian networks, speci�cally models inspired from multi-dimensional Bayesian network classi�ers. It is shown that with this approach to modeling, two new types of relationships are encoded in the estimated models in addition to the variable relationships captured in other EDAs: objectivevariable and objective-objective relationships. An extensive experimental study shows the e�ectiveness of this approach for multi- and many-objective optimization. With the proposed joint variable-objective modeling, in addition to the Pareto set approximation, the algorithm is also able to obtain an estimation of the multi-objective problem structure. Finally, the study of multi-objective optimization based on joint probabilistic modeling is extended to noisy domains, where the noise in objective values is represented by intervals. A new version of the Pareto dominance relation for ordering the solutions in these problems, namely �-degree Pareto dominance, is introduced and its properties are analyzed. We show that the ranking methods based on this dominance relation can result in competitive performance of EDAs with respect to the quality of the approximated Pareto sets. This dominance relation is then used together with a method for joint probabilistic modeling based on `1-regularization for multi-objective feature subset selection in classi�cation, where six di�erent measures of accuracy are considered as objectives with interval values. The individual assessment of the proposed joint probabilistic modeling and solution ranking methods on datasets with small-medium dimensionality, when using two di�erent Bayesian classi�ers, shows that comparable or better Pareto sets of feature subsets are approximated in comparison to standard methods.
Resumo:
In this paper, we address the problem of dynamic pricing to optimize the revenue coming from the sales of a limited inventory in a finite time-horizon. A priori, the demand is assumed to be unknown. The seller must learn on the fly. We first deal with the simplest case, involving only one class of product for sale. Furthermore the general situation is considered with a finite number of product classes for sale. In particular, a case in point is the sale of tickets for events related to culture and leisure; in this case, typically the tickets are sold months before the event, thus, uncertainty over actual demand levels is a very a common occurrence. We propose a heuristic strategy of adaptive dynamic pricing, based on experience gained from the past, taking into account, for each time period, the available inventory, the time remaining to reach the horizon, and the profit made in previous periods. In the computational simulations performed, the demand is updated dynamically based on the prices being offered, as well as on the remaining time and inventory. The simulations show a significant profit over the fixed-price strategy, confirming the practical usefulness of the proposed strategy. We develop a tool allowing us to test different dynamic pricing strategies designed to fit market conditions and seller s objectives, which will facilitate data analysis and decision-making in the face of the problem of dynamic pricing.
Resumo:
The Bologna Declaration and the implementation of the European Higher Education Area are promoting the use of active learning methodologies such as cooperative learning and project based learning. This study was motivated by the comparison of the results obtained after applying Cooperative Learning (CL) and Project Based Learning (PBL) to a subject of Computer Engineering. The fundamental hypothesis tested was whether the academic success achieved by the students of the first years was higher when CL was applied than in those cases to which PBL was applied. A practical case, by means of which the effectiveness of CL and PBL are compared, is presented in this work. This study has been carried out at the Universidad Politécnica de Madrid, where these mechanisms have been applied to the Operating Systems I subject from the Technical Engineering in Computer Systems degree (OSIS) and to the same subject from the Technical Engineering in Computer Management degree (OSIM). Both subjects have the same syllabus, are taught in the same year and semester and share also formative objectives. From this study we can conclude that students¿ academic performance (regarding the grades given) is greater with PBL than with CL. To be more specific, the difference is between 0.5 and 1 point for the individual tests. For the group tests, this difference is between 2.5 and 3 points. Therefore, this study refutes the fundamental hypothesis formulated at the beginning. Some of the possible interpretations of these results are referred to in this study.
Resumo:
Las centrales nucleares necesitan de personal altamente especializado y formado. Es por ello por lo que el sector de la formación especializada en centrales nucleares necesita incorporar los últimos avances en métodos formativos. Existe una gran cantidad de cursos de formación presenciales y es necesario transformar dichos cursos para utilizarlos con las nuevas tecnologías de la información. Para ello se necesitan equipos multidisciplinares, en los que se incluyen ingenieros, que deben identificar los objetivos formativos, competencias, contenidos y el control de calidad del propio curso. En este proyecto se utilizan técnicas de ingeniería del conocimiento como eje metodológico para transformar un curso de formación presencial en formación on-line a través de tecnologías de la información. En la actualidad, las nuevas tecnologías de la información y comunicación están en constante evolución. De esta forma se han sumergido en el mundo transformando la visión que teníamos de éste para dar lugar a nuevas oportunidades. Es por ello que este proyecto busca la unión entre el e-learning y el mundo empresarial. El objetivo es el diseño, en plataforma e-learning, de un curso técnico que instruya a operadores de sala de control de una central nuclear. El trabajo realizado en este proyecto ha sido, además de transformar un curso presencial en on-line, en obtener una metodología para que otros cursos se puedan transformar. Para conseguir este cometido, debemos preocuparnos tanto por el contenido de los cursos como por su gestión. Por este motivo, el proyecto comienza con definiciones básicas de terminología propia de e-learning. Continúa con la generación de una metodología que aplique la gestión de conocimiento para transformar cualquier curso presencial a esta plataforma. Definida la metodología, se aplicará para el diseño del curso específico de Coeficientes Inherentes de Reactividad. Finaliza con un estudio económico que dé viabilidad al proyecto y con la creación de un modelo económico que estime el precio para cualquier curso futuro. Abstract Nuclear power plants need highly specialized and trained personnel. Thus, nuclear power plant Specialized Training Sector requires the incorporation of the latest advances in training methods. A large array of face-to-face training courses exist and it has become necessary to transform said courses in order to apply them with the new information systems available. For this, multidisciplinary equipment is needed where the engineering workforce must identify educational objectives, competences and abilities, contents and quality control of the different courses. In this project, knowledge engineering techniques are employed as the methodological axis in order to transform a face-to-face training course into on-line training through the use of new information technologies. Nowadays, new information and communication technologies are in constant evolution. They have introduced themselves into our world, transforming our previous vision of them, leading to new opportunities. For this reason, the present Project seeks to unite the use of e-learning and the Business and Corporate world. The main objective is the design, in an e-learning platform, of a technical course that will train nuclear power plant control-room operators. The work carried out in this Project has been, in addition to the transformation of a face-to-face course into an online one, the obtainment of a methodology to employ in the future transformation of other courses. In order to achieve this mission, our interest must focus on the content as well as on the management of the various courses. Hence, the Project starts with basic definitions of e-learning terminology. Next, a methodology that applies knowledge management for the transformation of any face-to-face course into e-learning has been generated. Once this methodology is defined, it has been applied for the design process of the Inherent Coefficients of Reactivity course. Finally, an economic study has been developed in order to determine the viability of the Project and an economic model has been created to estimate the price of any given course
Resumo:
El objetivo principal de este proyecto ha sido introducir aprendizaje automático en la aplicación FleSe. FleSe es una aplicación web que permite realizar consultas borrosas sobre bases de datos nítidos. Para llevar a cabo esta función la aplicación utiliza unos criterios para definir los conceptos borrosos usados para llevar a cabo las consultas. FleSe además permite que el usuario cambie estas personalizaciones. Es aquí donde introduciremos el aprendizaje automático, de tal manera que los criterios por defecto cambien y aprendan en función de las personalizaciones que van realizando los usuarios. Los objetivos secundarios han sido familiarizarse con el desarrollo y diseño web, al igual que recordar y ampliar el conocimiento sobre lógica borrosa y el lenguaje de programación lógica Ciao-Prolog. A lo largo de la realización del proyecto y sobre todo después del estudio de los resultados se demuestra que la agrupación de los usuarios marca la diferencia con la última versión de la aplicación. Esto se basa en la siguiente idea, podemos usar un algoritmo de aprendizaje automático sobre las personalizaciones de los criterios de todos los usuarios, pero la gran diversidad de opiniones de los usuarios puede llevar al algoritmo a concluir criterios erróneos o no representativos. Para solucionar este problema agrupamos a los usuarios intentando que cada grupo tengan la misma opinión o mismo criterio sobre el concepto. Y después de haber realizado las agrupaciones usar el algoritmo de aprendizaje automático para precisar el criterio por defecto de cada grupo de usuarios. Como posibles mejoras para futuras versiones de la aplicación FleSe sería un mejor control y manejo del ejecutable plserver. Este archivo se encarga de permitir a la aplicación web usar el lenguaje de programación lógica Ciao-Prolog para llevar a cabo la lógica borrosa relacionada con las consultas. Uno de los problemas más importantes que ofrece plserver es que bloquea el hilo de ejecución al intentar cargar un archivo con errores y en caso de ocurrir repetidas veces bloquea todas las peticiones siguientes bloqueando la aplicación. Pensando en los usuarios y posibles clientes, sería también importante permitir que FleSe trabajase con bases de datos de SQL en vez de almacenar la base de datos en los archivos de Prolog. Otra posible mejora basarse en distintas características a la hora de agrupar los usuarios dependiendo de los conceptos borrosos que se van ha utilizar en las consultas. Con esto se conseguiría que para cada concepto borroso, se generasen distintos grupos de usuarios, los cuales tendrían opiniones distintas sobre el concepto en cuestión. Así se generarían criterios por defecto más precisos para cada usuario y cada concepto borroso.---ABSTRACT---The main objective of this project has been to introduce machine learning in the application FleSe. FleSe is a web application that makes fuzzy queries over databases with precise information, using defined criteria to define the fuzzy concepts used by the queries. The application allows the users to change and custom these criteria. On this point is where the machine learning would be introduced, so FleSe learn from every new user customization of the criteria in order to generate a new default value of it. The secondary objectives of this project were get familiar with web development and web design in order to understand the how the application works, as well as refresh and improve the knowledge about fuzzy logic and logic programing. During the realization of the project and after the study of the results, I realized that clustering the users in different groups makes the difference between this new version of the application and the previous. This conclusion follows the next idea, we can use an algorithm to introduce machine learning over the criteria that people have, but the problem is the diversity of opinions and judgements that exists, making impossible to generate a unique correct criteria for all the users. In order to solve this problem, before using the machine learning methods, we cluster the users in order to make groups that have the same opinion, and afterwards, use the machine learning methods to precise the default criteria of each users group. The future improvements that could be important for the next versions of FleSe will be to control better the behaviour of the plserver file, that cost many troubles at the beginning of this project and it also generate important errors in the previous version. The file plserver allows the web application to use Ciao-Prolog, a logic programming language that control and manage all the fuzzy logic. One of the main problems with plserver is that when the user uploads a file with errors, it will block the thread and when this happens multiple times it will start blocking all the requests. Oriented to the customer, would be important as well to allow FleSe to manage and work with SQL databases instead of store the data in the Prolog files. Another possible improvement would that the cluster algorithm would be based on different criteria depending on the fuzzy concepts that the selected Prolog file have. This will generate more meaningful clusters, and therefore, the default criteria offered to the users will be more precise.
Resumo:
Background: The Clinical Learning Environment, Supervision and Nurse Teacher scale is a reliable and valid instrument to evaluate the quality of the clinical learning process in international nursing education contexts. Objectives: This paper reports the development and psychometric testing of the Spanish version of the Clinical Learning Environment, Supervision and Nurse Teacher scale. Design: Cross-sectional validation study of the scale. Setting: 10 public and private hospitals in the Alicante area, and the Faculty of Health Sciences (University of Alicante, Spain). Participants: 370 student nurses on clinical placement (January 2011–March 2012). Methods: The Clinical Learning Environment, Supervision and Nurse Teacher scale was translated using the modified direct translation method. Statistical analyses were performed using PASW Statistics 18 and AMOS 18.0.0 software. A multivariate analysis was conducted in order to assess construct validity. Cronbach’s alpha coefficient was used to evaluate instrument reliability. Results: An exploratory factorial analysis identified the five dimensions from the original version, and explained 66.4% of the variance. Confirmatory factor analysis supported the factor structure of the Spanish version of the instrument. Cronbach’s alpha coefficient for the scale was .95, ranging from .80 to .97 for the subscales. Conclusion: This version of the Clinical Learning Environment, Supervision and Nurse Teacher scale instrument showed acceptable psychometric properties for use as an assessment scale in Spanish-speaking countries.
Resumo:
This paper posits that the Nordic countries were able to ensure good standards of equality for its citizens, while at the same time maintaining decent levels of economic growth. This can be attributed to the Nordic countries’ more holistic approach towards social spending and their focus on uplifting the skill levels of its workforce. Thus, the notion that there must be a trade-off between economic performance and a more aggressive welfare regime should be examined more thoroughly. The debate for policy makers should perhaps be framed with regard to where the balance should be between growth and equity rather than a trade-off. Firstly, the paper will elaborate on what exactly the “Nordic model” is, based on a broad literature review. Next, the paper will unpack the key characteristics of the Nordic model and analyse if indeed expansive welfare provided through state support erodes work ethic and impact the economic competitiveness of countries. Next, the paper will provide an explanation for how the balance between economic and social objectives is maintained, in some of the Nordic countries. Lastly, the paper discusses whether the same balance can be achieved in Singapore.
Resumo:
This report offers a comparative policy study on adult learning within the scope of complementary research conducted by Beblavý et al. (2013) on how people upgrade their skills during their adult lifetimes. To achieve our objectives, we identified regulatory policies and financial support in 11 countries for two main categories of learning: formal higher education and employer-based training. Drawing upon the results of the country reports carried out by our partners in the MoPAct project, we found that in none of the countries examined is there an ‘older student’ policy. In most cases grants and financial support are awarded only up until a certain age. In all of the countries studied, standard undergraduate and post-graduate studies are available for part-time students. The distribution of full-time students and part-time students in tertiary education varies from one country to another as well as from one age group to another. The participation in full-time tertiary education programmes decreases with the age of students. In Lithuania, Latvia, Poland and the UK, there are no mandatory policies to ensure employer-based training. However, in Belgium, Czech Republic, Denmark, Estonia, Germany, Italy, the Netherlands and Spain, employer-based training is more clearly regulated and the employers might have obligations to provide training for their staff. Taking into consideration Beblavý et al. (2013), we observe that comparative differences across countries can be related to policy differences only in some cases. The policy framework seems to impact more the employer-based training than the educational attainment (upgrade of ISCED level). In Denmark, the Netherlands, Latvia, Lithuania, Czech Republic and Poland, we find a perfect match between policy outcomes and the results of Beblavý et al. (2013) related to employer-based training. This is not the case in the United Kingdom, where the two aspects observed are not correlated.
Resumo:
Mode of access: Internet.