981 resultados para Latent TGF-beta Binding Proteins


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liver fibrosis is characterized by high expression of the key profibrogenic cytokine transforming growth factor (TGF)-beta and the natural tissue inhibitor of metalloproteinases (TIMP)-1, leading to substantial accumulation of extracellular matrix. Liver fibrosis originates from various chronic liver diseases, such as chronic viral hepatitis that, to date, cannot be treated sufficiently. Thus, novel therapeutics, for example, those derived from Oriental medicine, have gained growing attention. In Korea, extracts prepared from Lindera obtusiloba are used for centuries for treatment of inflammation, improvement of blood circulation and prevention of liver damage, but experimental evidence of their efficacy is lacking. We studied direct antifibrotic effects in activated hepatic stellate cells (HSCs), the main target cell in the fibrotic liver. L. obtusiloba extract (135 mug/ml) reduced the de novo DNA synthesis of activated rat and human HSCs by about 90%, which was not accompanied by cytotoxicity of HSC, primary hepatocytes and HepG2 cells, pointing to induction of cellular quiescence. As determined by quantitative polymerase chain reaction, simultaneous treatment of HSCs with TGF-beta and L. obtusiloba extract resulted in reduction of TIMP-1 expression to baseline level, disruption of the autocrine loop of TGF-beta autoinduction and increased expression of fibrolytic matrix metalloproteinase (MMP)-3. In addition, L. obtusiloba reduced gelatinolytic activity of HSC by interfering with profibrogenic MMP-2 activity. Since L. obtusiloba extract prevented intracellular oxidative stress experimentally induced by tert-butylhydroperoxide, we concluded that the direct antifibrotic effect of L. obtusiloba extract might be mediated by antioxidant activity. Thus, L. obtusiloba, traditionally used in Oriental medicine, may complement treatment of chronic liver disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The insulin-like growth factor (IGF) is a major anabolic regulator in articular cartilage. The IGF-binding proteins (IGFBPs) are increased during osteoarthritis (OA), but the function of the later proteins remains unknown. In general, the IGFBPs are pluripotential effectors capable of IGF regulation and of acting on their own to control key cell functions, including survival and proliferation. The independent functions are often associated with their cell location, and therefore this study explores the distribution of IGFBP-2 and IGFBP-3 in articular chondrocytes. Immunohistochemistry was used to localize IGFBP-2 in normal human articular cartilage. Bovine chondrocytes were used for subcellular fractionation (hypotonic cell lysis) under nonreducing conditions and nuclear purification (centrifugation on sucrose cushions). Cell fraction markers and IGFBPs were assayed in the subcellular fractions by Western immunoblot. The IHC results showed association of IGFBP-2 with chondrocytes, but not with the nuclei. Subcellular fractionation of isolated chondrocytes yielded intact nuclei as assessed at the light microscopic level; the nuclear marker histone H1 was exclusively associated with this fraction. More than 90% of the cytoplasmic marker GAPDH and all the detectable IGFBP-2 were in the cytoplasmic fraction. Immunoreactive IGFBP-3 was found in the cytoplasmic and peri-nuclear/nuclear fractions. Chondrocytes contain intracellular IGFBP-2 and IGFBP-3 but only IGFBP-3 is associated with nuclei. This suggests the hypothesis that the actions of these IGFBPs in articular cartilage extend beyond the classic modulation of IGF receptor action.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insect bite hypersensitivity (IBH) is an IgE-mediated allergic dermatitis of horses caused by bites of insects such as Culicoides or Simulium spp. The aim of the present study was to compare the IgE-binding pattern of sera of IBH-affected horses to Culicoides nubeculosus and Simulium vittatum salivary gland extracts (SGE). Individual IgE responses to proteins of S. vittatum and C. nubeculosus SGEs were evaluated in 15 IBH-affected and three healthy horses on immunoblots. Fourteen out of the 15 IBH-affected but none of the healthy horses showed individual IgE binding patterns to seven and six main protein bands in C. nubeculosus and S. vittatum SGE, respectively. These 14 sera showed IgE-binding to proteins from SGE of both C. nubeculosus and S. vittatum, but they reacted with fewer protein bands derived from S. vittatum than from C. nubeculosus SGE. Sera showing IgE-binding to a 32 kDa band from C. nubeculosus always bound to a 32 kDa band from S. vittatum. Similarly, all sera binding to a 70 kDa band from C. nubeculosus reacted with a corresponding band in S. vittatum SGE. The 70 kDa bands from S. vittatum and C. nubeculosus were identified by mass spectrometry as heat shock protein-70-cognate-3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insect bite hypersensitivity (IBH) is an allergic dermatitis of horses caused by bites of Culicoides and sometimes Simulium spp. The aim of this investigation was to identify Simulium allergens associated with IBH. A phage surface display cDNA library expressing recombinant Simulium vittatum salivary gland proteins was screened using sera of IBH-affected horses sensitized to S. vittatum salivary gland proteins as shown in immunoblot, resulting in the identification of seven cDNAs encoding IgE-binding proteins. The deduced amino acid sequences of these proteins showed sequence similarities to antigen 5 like protein (Sim v 1), to a serine protease inhibitor (Sim v 2), to two alpha-amylases (Sim v 3 and Sim v 4), and to three S. vittatum erythema proteins (SVEPs). The cDNA inserts were subcloned and expressed as [His](6)-tagged protein in Escherichia coli and purified using Ni(2+)-chelate affinity chromatography. Mice were immunised with the seven recombinant proteins and the antibodies tested against the recombinant proteins and salivary gland extract (SGE) of S. vittatum and Culicoides nubeculosus in immunoblot analyses. r-Sim v 1 specific mouse Abs recognized a band of about 32 kDa in immunoblots of both S. vittatum and C. nubeculosus SGE, detectable also by serum IgE of IBH-affected horses. Preincubation of horse serum with r-Sim v 1 completely inhibited IgE binding to the 32 kDa band demonstrating the presence of cross-reactive antigen 5 like proteins in both SGE. Determination of IgE levels against the r-Sim v proteins and crude S. vittatum extract by ELISA in sera from 25 IBH-affected and 20 control horses showed that IBH-affected horses had significantly higher IgE levels than controls against r-Sim v 1, 2, 3, 4 and S. vittatum extract, whereas the r-SVEP showed only marginal IgE binding. Further analyses showed that 60% of IBH-affected horses reacted to r-Sim v 1, suggesting that this could be a major allergen for IBH. Forty to twenty percent of the IBH-affected horses reacted with r-Sim v 2, 3 or 4. Combination of the results obtained with the 4 r-Sim v proteins showed that 92% of the IBH-affected but only 15% of the healthy horses had IgE levels against one or more of the 4 r-Sim v proteins. Seventy percent of the healthy horses had detectable IgE against S. vittatum extract, indicating a low specificity of the detection system used. Optimization of the ELISA system will be required to determine reliable cut-off values for the IBH-related allergens. Their in vivo relevance needs to be carefully assessed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mesenchymal stromal cells (MSCs) have a multilineage differentiation potential and provide immunosuppressive and antimicrobial functions. Murine as well as human MSCs restrict the proliferation of T cells. However, species-specific differences in the underlying molecular mechanisms have been described. Here, we analyzed the antiparasitic effector mechanisms active in murine MSCs. Murine MSCs, in contrast to human MSCs, could not restrict the growth of a highly virulent strain of Toxoplasma gondii (BK) after stimulation with IFN-γ. However, the growth of a type II strain of T. gondii (ME49) was strongly inhibited by IFN-γ-activated murine MSCs. Immunity-related GTPases (IRGs) as well as guanylate-binding proteins (GBPs) contributed to this antiparasitic effect. Further analysis showed that IFN-γ-activated mMSCs also inhibit the growth of Neospora caninum, a parasite belonging to the apicomplexan group as well. Detailed studies with murine IFN-γ-activated MSC indicated an involvement in IRGs like Irga6, Irgb6 and Irgd in the inhibition of N. caninum. Additional data showed that, furthermore, GBPs like mGBP1 and mGBP2 could have played a role in the anti-N. caninum effect of murine MSCs. These data underline that MSCs, in addition to their regenerative and immunosuppressive activity, function as antiparasitic effector cells as well. However, IRGs are not present in the human genome, indicating a species-specific difference in anti-T. gondii and anti-N. caninum effect between human and murine MSCs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

cAMP-response element binding (CREB) proteins are involved in transcriptional regulation in a number of cellular processes (e.g., neural plasticity and circadian rhythms). The CREB family contains activators and repressors that may interact through positive and negative feedback loops. These loops can be generated by auto- and cross-regulation of expression of CREB proteins, via CRE elements in or near their genes. Experiments suggest that such feedback loops may operate in several systems (e.g., Aplysia and rat). To understand the functional implications of such feedback loops, which are interlocked via cross-regulation of transcription, a minimal model with a positive and negative loop was developed and investigated using bifurcation analysis. Bifurcation analysis revealed diverse nonlinear dynamics (e.g., bistability and oscillations). The stability of steady states or oscillations could be changed by time delays in the synthesis of the activator (CREB1) or the repressor (CREB2). Investigation of stochastic fluctuations due to small numbers of molecules of CREB1 and CREB2 revealed a bimodal distribution of CREB molecules in the bistability region. The robustness of the stable HIGH and LOW states of CREB expression to stochastic noise differs, and a critical number of molecules was required to sustain the HIGH state for days or longer. Increasing positive feedback or decreasing negative feedback also increased the lifetime of the HIGH state, and persistence of this state may correlate with long-term memory formation. A critical number of molecules was also required to sustain robust oscillations of CREB expression. If a steady state was near a deterministic Hopf bifurcation point, stochastic resonance could induce oscillations. This comparative analysis of deterministic and stochastic dynamics not only provides insights into the possible dynamics of CREB regulatory motifs, but also demonstrates a framework for understanding other regulatory processes with similar network architecture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cells must rapidly sense and respond to a wide variety of potentially cytotoxic external stressors to survive in a constantly changing environment. In a search for novel genes required for stress tolerance in Saccharomyces cerevisiae, we identified the uncharacterized open reading frame YER139C as a gene required for growth at 37 degrees C in the presence of the heat shock mimetic formamide. YER139C encodes the closest yeast homolog of the human RPAP2 protein, recently identified as a novel RNA polymerase II (RNAPII)-associated factor. Multiple lines of evidence support a role for this gene family in transcription, prompting us to rename YER139C RTR1 (regulator of transcription). The core RNAPII subunits RPB5, RPB7, and RPB9 were isolated as potent high-copy-number suppressors of the rtr1Delta temperature-sensitive growth phenotype, and deletion of the nonessential subunits RPB4 and RPB9 hypersensitized cells to RTR1 overexpression. Disruption of RTR1 resulted in mycophenolic acid sensitivity and synthetic genetic interactions with a number of genes involved in multiple phases of transcription. Consistently, rtr1Delta cells are defective in inducible transcription from the GAL1 promoter. Rtr1 constitutively shuttles between the cytoplasm and nucleus, where it physically associates with an active RNAPII transcriptional complex. Taken together, our data reveal a role for members of the RTR1/RPAP2 family as regulators of core RNAPII function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Familial aggregation of intracranial aneurysms (IA) strongly suggests a genetic contribution to pathogenesis. However, genetic risk factors have yet to be defined. For families affected by aortic aneurysms, specific gene variants have been identified, many affecting the receptors to transforming growth factor-beta (TGF-beta). In recent work, we found that aortic and intracranial aneurysms may share a common genetic basis in some families. We hypothesized, therefore, that mutations in TGF-beta receptors might also play a role in IA pathogenesis. METHODS: To identify genetic variants in TGF-beta and its receptors, TGFB1, TGFBR1, TGFBR2, ACVR1, TGFBR3, and ENG were directly sequenced in 44 unrelated patients with familial IA. Novel variants were confirmed by restriction digestion analyses, and allele frequencies were analyzed in cases versus individuals without known intracranial disease. Similarly, allele frequencies of a subset of known SNPs in each gene were also analyzed for association with IA. RESULTS: No mutations were found in TGFB1, TGFBR1, TGFBR2, or ACVR1. Novel variants identified in ENG (p.A60E) and TGFBR3 (p.W112R) were not detected in at least 892 reference chromosomes. ENG p.A60E showed significant association with familial IA in case-control studies (P=0.0080). No association with IA could be found for any of the known polymorphisms tested. CONCLUSIONS: Mutations in TGF-beta receptor genes are not a major cause of IA. However, we identified rare variants in ENG and TGFBR3 that may be important for IA pathogenesis in a subset of families.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

cAMP-response element binding (CREB) proteins are involved in transcriptional regulation in a number of cellular processes (e.g., neural plasticity and circadian rhythms). The CREB family contains activators and repressors that may interact through positive and negative feedback loops. These loops can be generated by auto- and cross-regulation of expression of CREB proteins, via CRE elements in or near their genes. Experiments suggest that such feedback loops may operate in several systems (e.g., Aplysia and rat). To understand the functional implications of such feedback loops, which are interlocked via cross-regulation of transcription, a minimal model with a positive and negative loop was developed and investigated using bifurcation analysis. Bifurcation analysis revealed diverse nonlinear dynamics (e.g., bistability and oscillations). The stability of steady states or oscillations could be changed by time delays in the synthesis of the activator (CREB1) or the repressor (CREB2). Investigation of stochastic fluctuations due to small numbers of molecules of CREB1 and CREB2 revealed a bimodal distribution of CREB molecules in the bistability region. The robustness of the stable HIGH and LOW states of CREB expression to stochastic noise differs, and a critical number of molecules was required to sustain the HIGH state for days or longer. Increasing positive feedback or decreasing negative feedback also increased the lifetime of the HIGH state, and persistence of this state may correlate with long-term memory formation. A critical number of molecules was also required to sustain robust oscillations of CREB expression. If a steady state was near a deterministic Hopf bifurcation point, stochastic resonance could induce oscillations. This comparative analysis of deterministic and stochastic dynamics not only provides insights into the possible dynamics of CREB regulatory motifs, but also demonstrates a framework for understanding other regulatory processes with similar network architecture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 3' ends of animal replication-dependent histone mRNAs are formed by endonucleolytic cleavage of the primary transcripts downstream of a highly conserved RNA hairpin. The hairpin-binding protein (HBP) binds to this RNA element and is involved in histone RNA 3' processing. A minimal RNA-binding domain (RBD) of approximately 73 amino acids that has no similarity with other known RNA-binding motifs was identified in human HBP [Wang Z-F et al., Genes & Dev, 1996, 10:3028-3040]. The primary sequence identity between human and Caenorhabditis elegans RBDs is 55% compared to 38% for the full-length proteins. We analyzed whether differences between C. elegans and human HBP and hairpins are reflected in the specificity of RNA binding. The C. elegans HBP and its RBD recognize only their cognate RNA hairpins, whereas the human HBP or RBD can bind both the mammalian and the C. elegans hairpins. This selectivity of C. elegans HBP is mostly mediated by the first nucleotide in the loop, which is C in C. elegans and U in all other metazoans. By converting amino acids in the human RBD to the corresponding C. elegans residues at places where the latter deviates from the consensus, we could identify two amino acid segments that contribute to selectivity for the first nucleotide of the hairpin loop.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antibody-drug conjugates (ADCs) have emerged as a promising class of anticancer agents, combining the specificity of antibodies for tumor targeting and the destructive potential of highly potent drugs as payload. An essential component of these immunoconjugates is a bifunctional linker capable of reacting with the antibody and the payload to assemble a functional entity. Linker design is fundamental, as it must provide high stability in the circulation to prevent premature drug release, but be capable of releasing the active drug inside the target cell upon receptor-mediated endocytosis. Although ADCs have demonstrated an increased therapeutic window, compared to conventional chemotherapy in recent clinical trials, therapeutic success rates are still far from optimal. To explore other regimes of half-life variation and drug conjugation stoichiometries, it is necessary to investigate additional binding proteins which offer access to a wide range of formats, all with molecularly defined drug conjugation. Here, we delineate recent progress with site-specific and biorthogonal conjugation chemistries, and discuss alternative, biophysically more stable protein scaffolds like Designed Ankyrin Repeat Proteins (DARPins), which may provide such additional engineering opportunities for drug conjugates with improved pharmacological performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The RNA binding proteins RBM binding motif protein 38 (RBM38) and DEAD END 1 (DND1) selectively stabilize mRNAs by attenuating RNAse activity or protecting them from micro(mi)RNA-mediated cleavage. Furthermore, both proteins can efficiently stabilize the mRNA of the cell cycle inhibitor p21(CIP1). Since acute myeloid leukemia (AML) differentiation requires cell cycle arrest and RBM38 as well as DND1 have antiproliferative functions, we hypothesized that decreased RBM38 and DND1 expression may contribute to the differentiation block seen in this disease. We first quantified RBM38 and DND1 mRNA expression in clinical AML patient samples and CD34(+) progenitor cells and mature granulocytes from healthy donors. We found significantly lower RBM38 and DND1 mRNA levels in AML blasts and CD34(+) progenitor cells as compared to mature neutrophils from healthy donors. Furthermore, the lowest expression of both RBM38 and DND1 mRNA correlated with t(8;21). In addition, neutrophil differentiation of CD34(+) cells in vitro with G-CSF (granulocyte colony stimulating factor) resulted in a significant increase of RBM38 and DND1 mRNA levels. Similarly, neutrophil differentiation of NB4 acute promyelocytic leukemia (APL) cells was associated with a significant induction of RBM38 and DND1 expression. To address the function of RBM38 and DND1 in neutrophil differentiation, we generated two independent NB4RBM38 as well as DND1 knockdown cell lines. Inhibition of both RBM38 and DND1 mRNA significantly attenuated NB4 differentiation and resulted in decreased p21(CIP1) mRNA expression. Our results clearly indicate that expression of the RNA binding proteins RBM38 and DND1 is repressed in primary AML patients, that neutrophil differentiation is dependent on increased expression of both proteins, and that these proteins have a critical role in regulating p21(CIP1) expression during APL differentiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Systemic sclerosis (SSc) or Scleroderma is a complex disease and its etiopathogenesis remains unelucidated. Fibrosis in multiple organs is a key feature of SSc and studies have shown that transforming growth factor-β (TGF-β) pathway has a crucial role in fibrotic responses. For a complex disease such as SSc, expression quantitative trait loci (eQTL) analysis is a powerful tool for identifying genetic variations that affect expression of genes involved in this disease. In this study, a multilevel model is described to perform a multivariate eQTL for identifying genetic variation (SNPs) specifically associated with the expression of three members of TGF-β pathway, CTGF, SPARC and COL3A1. The uniqueness of this model is that all three genes were included in one model, rather than one gene being examined at a time. A protein might contribute to multiple pathways and this approach allows the identification of important genetic variations linked to multiple genes belonging to the same pathway. In this study, 29 SNPs were identified and 16 of them located in known genes. Exploring the roles of these genes in TGF-β regulation will help elucidate the etiology of SSc, which will in turn help to better manage this complex disease. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Steroid binding proteins are an obvious choice in the search for genetic factors in plasma that might predispose to upper body obesity, a risk factor for non-insulin dependent diabetes and cardiovascular disease. The two steroid binding proteins studied by isoelectric focusing were sex hormone binding globulin (SHBG), the transport protein for sex hormones and corticosteroid binding globulin (CBG), the transport protein for corticosteroids. Auto-radiography and immunoblotting on polyacrylamide gels were used to detect polymorphism in SHBG. Immunoblotting on agarose gels was used to visualize corticosteroid binding globulin. SHBG showed similar structural variation in American Caucasians, American Blacks and Canadian Indians. Two alleles (1, 2) were hypothesized with highly polymorphic frequencies in all three ethnic groups. CBG was not found to be polymorphic, but two variants were found in Caucasian male twins and in a Black individual. The finding of a good assay and a polymorphic system for SHBG are the first steps for additional studies into disease associations. ^