927 resultados para Laser diode (LD)
Resumo:
We describe a technique applicable to interferometric systems illuminated by a laser diode, whereby the optical path difference is recovered by means of sinusoidal modulation of the laser emission frequency.
Resumo:
Thermal characterizations of high power light emitting diodes (LEDs) and laser diodes (LDs) are one of the most critical issues to achieve optimal performance such as center wavelength, spectrum, power efficiency, and reliability. Unique electrical/optical/thermal characterizations are proposed to analyze the complex thermal issues of high power LEDs and LDs. First, an advanced inverse approach, based on the transient junction temperature behavior, is proposed and implemented to quantify the resistance of the die-attach thermal interface (DTI) in high power LEDs. A hybrid analytical/numerical model is utilized to determine an approximate transient junction temperature behavior, which is governed predominantly by the resistance of the DTI. Then, an accurate value of the resistance of the DTI is determined inversely from the experimental data over the predetermined transient time domain using numerical modeling. Secondly, the effect of junction temperature on heat dissipation of high power LEDs is investigated. The theoretical aspect of junction temperature dependency of two major parameters – the forward voltage and the radiant flux – on heat dissipation is reviewed. Actual measurements of the heat dissipation over a wide range of junction temperatures are followed to quantify the effect of the parameters using commercially available LEDs. An empirical model of heat dissipation is proposed for applications in practice. Finally, a hybrid experimental/numerical method is proposed to predict the junction temperature distribution of a high power LD bar. A commercial water-cooled LD bar is used to present the proposed method. A unique experimental setup is developed and implemented to measure the average junction temperatures of the LD bar. After measuring the heat dissipation of the LD bar, the effective heat transfer coefficient of the cooling system is determined inversely. The characterized properties are used to predict the junction temperature distribution over the LD bar under high operating currents. The results are presented in conjunction with the wall-plug efficiency and the center wavelength shift.
Resumo:
The spectral characteristics of a diode laser are significantly affected due to interference caused between the laser diode output and the optical feedback in the external-cavity. This optical feedback effect is of practical use for linewidth reduction, tuning or for sensing applications. A sensor based on this effect is attractive due to its simplicity, low cost and compactness. This optical sensor has been used so far, in different configuration such as for sensing displacement induced by different parameters. In this paper we report a compact optical sensor consisting of a semiconductor laser coupled to an external cavity. Theoretical analysis of the self- mixing interference for optical sensing applications is given for moderate optical feedback case. A comparison is made with our experimental observations. Experimental results are in good agreement with the simulated power modulation based on self-mixing interference theory. Displacements as small as 10-4 nm have been measured using this sensor. The developed sensor showed a fringe sensitivity of one fringe per 400nm displacement for reflector distance of around 10cms. The sensor has also been tested for magnetic field and temperature induced displacement measurements.
Resumo:
研究了国产Yb:YAG陶瓷的激光输出特性。激光器采用激光二极管(LD)纵向同轴抽运Yb:YAG陶瓷样品,样品的掺杂原子数分数为1%,一端面镀940 nm和1030 nm双增透膜,另一端面镀1030 nm增透膜,激光器在1031 nm处获得了近红外激光输出。实验中分别测试了Yb:YAG陶瓷在不同输出透射率(T=4%,8%,10%)条件下的激光输出特性。整个实验过程中,激光器维持基横模运转。当输出透射率为10%,吸收的抽运功率为9 W时,激光器获得最大的激光输出功率为1.63 W,相应的斜率效率为23.2%。
Resumo:
Incorporating the shielded method and post-processing method, a 75 mW single frequency Yb-doped DFB fiber laser was obtained with a 250 mW laser diode pump source at 978 nm. The threshold of the laser is 2 mW. The laser is single-polarization operation and the output power fluctuation is less than 0.2 mW in one hour when the pump power is 250 mW.
Resumo:
报道了全固态激光器连续抽运高重复率电光调Q的实验和理论分析结果。用LGS(La3Ga5SiO14)晶体作电光调Q元件,在激光二极管(LD)端面抽运Nd:YVO4激光器中实现了较高重复率的电光调Q输出。实验中在10^4Hz重复率下,抽运功率为28w时,平均功率超过5W,脉冲宽度为7ns,峰值功率为70kW,并对不同重复率时的脉冲输出进行了比较,在低重复率下,脉宽〈6.5ns,峰值功率超过100kW。在理论上,通过对连续抽运时的电光调Q速率方程进行修正,并考虑放大自发辐射(ASE)的影响,对调Q激光器的储能过
Resumo:
研究了激光二极管(LD)侧向抽运的Nd:YAG陶瓷电光调Q激光器的激光输出特性。该激光器采用九组激光二极管线阵列(LDA)侧面紧密环绕均匀排布的抽运结构,并用微通道热汇冷却技术冷却。在电光调Q方式下,重复频率为100Hz,抽运单脉冲能量为416mJ时,用尺寸为庐5mm×75mm,掺杂原子数分数为1%的Nd:YAG陶瓷棒,获得50mJ的1064nm激光输出,脉冲宽度为12ns,斜率效率达24%。并实验测量和分析了偏振片,KD^*P晶体,四分之一波片等调Q器件的插入损耗。测量了输出激光时间波形和光斑的光强空间
Resumo:
A planar waveguide laser operating in a negative branch unstable resonator is Q-switched by an acoustooptic mod latorin anew configuration, providing effective, high-speed switching. The laser using a 200-mu m Nd:YAG core, face pumped by 10 laser diode bars, has produced 100-W output in a good beam quality at 100-kHz pulse rate, and 4.5 mJ at lower frequency with 15-ns pulse duration.
Resumo:
以短的高掺杂浓度的掺铥硅基光纤为增益介质,采用790 nm波长的激光二极管(LD)为抽运源,得到了波长为2 μm的高功率激光输出。当光纤长度为7 cm时,激光器的阈值泵浦功率为135 mW,最大输出功率为1.09 W,斜率效率为9.6%(相对于耦合进光纤的抽运功率)。该激光器的输出稳定性在5%以内。此外,我们还观察分析了工作温度和其他腔结构参量对该激光器工作性能的影响。
Resumo:
In this letter, we present an all solid-state, injection-seeded Ti:sapphire laser. The laser is pumped by a laser diode pumped frequency-doubled Nd:YAG laser, and injection-seeded by an external cavity laser diode with the wavelength between 770 and 780 nm. The single longitude mode and the doubling efficiency of the laser are obtained after injection seeding. The experimental setup and relative results are reported. It is a good candidate laser source for mobile differential absorption lidar (DIAL) system.
Resumo:
A single-longitudinal-mode (SLM) laser-diode pumped Nd: YAG laser with adjustable pulse width is developed by using the techniques of pre-lasing and changing polarization of birefingent crystal. The Q-switching voltage is triggered by the peak of the pre-lasing pulse to achieve the higher stability of output pulse energy. The output energy of more than 1 mJ is obtained with output energy stability of 3% (rms) at 100 Hz. The pulse-width can be adjusted from 30 ns to 300 ns by changing the Q-switching voltage. The probability of putting out single-longitudinal-mode pulses is almost 100%. The laser can be run over four hours continually without mode hopping.
Resumo:
Using a quite uniformly side-around arranged compact pumping system, a high power Nd:YAG ceramic quasi-CW laser has been demonstrated with high optical-to-optical conversion efficiency over 50% for the first time. With 450 W quasi-CW stacked laser diode bars pumping at 808 run. 236 W Output at 1064 run was obtained and no saturation phenomena were observed.
Resumo:
By using quite uniformly nine-stacks side-around arranged compact pumping system, a high power Nd:YAG ceramic quasi-CW laser with high slope efficiency of 62% has been demonstrated. With 450 W quasi-CW stacked laser diode bars pumping at 808 nm, performance of the Nd: YAG ceramic laser with different output coupling mirrors has been investigated. Optimum output power of 236 W at 1064 nm was obtained and corresponding optical-to-optical conversion efficiency was as high as 52.5%. The laser system operated quite stably and no saturation phenomena have been observed, which means higher output laser power could be obtained if injecting higher pumping power. The still-evolving Nd: YAG ceramics are potential super excellent media for high power practical laser applications. (c) 2005 Optical Society of America.
Resumo:
We investigate the lasing characteristics of a laser-diode-array side-pumped electro-optic Q-switched Nd:Y3Al5O12 ceramic laser operating at 1000 Hz pulse repetition rate. Using a YAG poltcrystalline rod with Nd3+ concentration at 1 at.% as the gain medium, pumping with 808 nm laser-diode-arrays, the Q-switched laser output at 1064 nm wavelength with 23 mJ pulse energy and less than 12 ns FWHM pulse width are obtained at a pumping power of about 400 W, the slope efficiency is around 15%, the output beam divergence angle is about 1.2 mrad.
Resumo:
A compact continuous-wave blue laser has been demonstrated by direct frequency doubling of a laser diode with a periodically poled lithium niobate (PPLN) waveguide crystal. The optimum PPLN temperature is near 28 degreesC, and the dependence of waveguide crystals on crystal temperature is less sensitive than that of bulk crystals. A total of 14.8 mW of 488-nm laser power has been achieved. (C) 2005 Optical Society of America.