922 resultados para Lagrange interpolation
Resumo:
Pós-graduação em Educação Matemática - IGCE
Resumo:
In this letter, a methodology is proposed for automatically (and locally) obtaining the shape factor c for the Gaussian basis functions, for each support domain, in order to increase numerical precision and mainly to avoid matrix inversion impossibilities. The concept of calibration function is introduced, which is used for obtaining c. The methodology developed was applied for a 2-D numerical experiment, which results are compared to analytical solution. This comparison revels that the results associated to the developed methodology are very close to the analytical solution for the entire bandwidth of the excitation pulse. The proposed methodology is called in this work Local Shape Factor Calibration Method (LSFCM).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We consider a recently proposed finite-element space that consists of piecewise affine functions with discontinuities across a smooth given interface Γ (a curve in two dimensions, a surface in three dimensions). Contrary to existing extended finite element methodologies, the space is a variant of the standard conforming Formula space that can be implemented element by element. Further, it neither introduces new unknowns nor deteriorates the sparsity structure. It is proved that, for u arbitrary in Formula, the interpolant Formula defined by this new space satisfies Graphic where h is the mesh size, Formula is the domain, Formula, Formula, Formula and standard notation has been adopted for the function spaces. This result proves the good approximation properties of the finite-element space as compared to any space consisting of functions that are continuous across Γ, which would yield an error in the Formula-norm of order Graphic. These properties make this space especially attractive for approximating the pressure in problems with surface tension or other immersed interfaces that lead to discontinuities in the pressure field. Furthermore, the result still holds for interfaces that end within the domain, as happens for example in cracked domains.
Resumo:
Hermite interpolation is increasingly showing to be a powerful numerical solution tool, as applied to different kinds of second order boundary value problems. In this work we present two Hermite finite element methods to solve viscous incompressible flows problems, in both two- and three-dimension space. In the two-dimensional case we use the Zienkiewicz triangle to represent the velocity field, and in the three-dimensional case an extension of this element to tetrahedra, still called a Zienkiewicz element. Taking as a model the Stokes system, the pressure is approximated with continuous functions, either piecewise linear or piecewise quadratic, according to the version of the Zienkiewicz element in use, that is, with either incomplete or complete cubics. The methods employ both the standard Galerkin or the Petrov–Galerkin formulation first proposed in Hughes et al. (1986) [18], based on the addition of a balance of force term. A priori error analyses point to optimal convergence rates for the PG approach, and for the Galerkin formulation too, at least in some particular cases. From the point of view of both accuracy and the global number of degrees of freedom, the new methods are shown to have a favorable cost-benefit ratio, as compared to velocity Lagrange finite elements of the same order, especially if the Galerkin approach is employed.
Resumo:
In dieser Arbeit wird eine Deformationstheorie fürLagrange-Singularitäten entwickelt. Wir definieren einen Komplex von Moduln mit nicht-linearem Differential, densogenannten Lagrange-de Rham-Komplex, dessen ersteKohomologie isomorph zum Raum der infinitesimalenLagrange-Deformationen ist. Wir beschreiben die Beziehung diesesKomplexes zur Theorie der Moduln über dem Ring vonDifferentieloperatoren. Informationen zur Obstruktionstheorie vonLagrange-Deformationen werden aus derzweiten Kohomologie des Lagrange-de Rham-Komplexes gewonnen.Wir zeigen, dass unter einer geometrischen Bedingung an dieSingularität ie Kohomologie von des Lagrange-deRham-Komplexes ausendlich dimensionalen Vektorräumen besteht. Desweiteren wirdeine Methode zur effektiven Berechnung dieser Kohomologie fürquasi-homogene Lagrange-Flächensingularitäten entwickelt. UnterZuhilfenahme von Computeralgebra wird diese Methode für konkreteBeispiele angewendet.