228 resultados para Lactococcus lactis
Resumo:
This study investigated the viability of probiotic (Lactobacillus acidophilus LA5, Lactobacillus rhamnosus LBA and Bifidobacterium animalis subsp. lactis BL-04) in milk fermented with Lactobacillus delbrueckii subsp. bulgaricus LB340 and Streptococcus thermophilus TAO (yoghurt - Y). Each probiotic strain was grown separately in co-culture with Y and in blends of different combinations. Blends affected fermentation time(s), pH and firmness during storage at 4 degrees C. The product made with Y plus B. animalis subsp. lactis and L. rhamnosus had counts of viable cells at the end of shelf life that met the minimum required to achieve probiotic effect. However, L. acidophilus and L. delbrueckii subsp. bulgaricus were inhibited.
Resumo:
Inulin was used as a prebiotic to improve the quality and consistency of skim milk fermented by co-cultures and pure Cultures of Lactobacillus acidophilus, Lactobacillus rhamnosus, Lactobacillus bulgaricus and Bifidobacterium lactis with Streptococcus thermophilus. We compared, either in the presence or absence of 4 g inulin/100 g, the results of the main kinetic parameters, specifically the generation time (t(g)), the maximum acidification rate (V(max)). and the times to reach V(max) (t(max)), to attain pH 5.0 (t(pH5.0)) and to complete the fermentation (t(pH4.5)). Post-acidification, lactic acid formation and cell counts were also determined and compared, either 1 day after the fermentation was complete or after 7 day storage at 4 degrees C. In general, inulin addition to the milk increased in co-cultures V(max), decreased t(max), t(g) and t(pH4.5), favored post-acidification, exerted a bifidogenic effect, and preserved almost intact cell viability during storage. In addition, S. thermophilus was shown to stimulate the metabolism of the other lactic bacteria. Contrary to co-cultures, most of the effects in pure Cultures were not statistically significant. The most important aspect of this paper is the use of the generation time as a toot to investigate the microbial response to inulin addition. (c) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Inulin was used as a prebiotic to improve the quality and consistency of skim milk fermented by Lactobacillus acidophilus (La), Lactobacillus rhamnosus (Lr), Lactobacillus bulgaricus (Lb) and Bifidobacterium lactis (BI) with Streptococcus thermophilus (St), either in binary co-cultures or in cocktail containing all microorganisms. We compared, either in the presence of 40 mg inulin g(-1) or not, the results of the maximum acidification rate (V(max)) and the times to reach it (t(max)), to reach pH 5.0 (t(PH5.0)) and to complete the fermentation (t(f)). Post-acidification, lactic acid formation and cell counts were also compared after either 1 day (D1) or 7 days of storage at 4 degrees C (N). In co-culture, inulin addition to the milk increased V(max), decreased t(max) and t(f), favored post-acidification and exerted a bifidogenic effect. S. thermophilus proved to stimulate the metabolism of the other lactic bacteria and enhanced the product features. After D7, a significant prebiotic effect of inulin was observed in all co-cultures. Either after D1 or D7, the enumerations of Lr and BI in mixed culture markedly decreased compared to their respective co-cultures because of greater competition for the same substrates. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The main objectives of the present study were (a) to study the effects of the different combinations of Lactobacillus delbrueckii subsp. bulgaricus (Lb), Lactobacillus acidophilus (La), Lactobacillus rhamnosus (Lr), and Bifidobacterium animalis subsp. lactis (BI) in co-culture with Streptococcus thermophilus (St) on the rate of acid development in milk and milk-whey mixture, and (b) the effect of the level of the total solids of the different bases on the acidification profile and viability of potential health-promoting microorganisms. The co-culture of St-Lr showed the lowest values V(max) in all bases; while the co-culture St-Bl had high t(Vmax) in milk and whey bases (12 and 10 g/100 g, respectively). Co-cultures St-La and St-Lb reached V(max) at pH 5.5, while St-Lr and St-Bl at pH 5.91. Fermentation time to reach pH 4.5 was longer when St-Lr co-culture was used, while St-Lb had the lowest value. All the products had slight development of acid during the storage period, and lowest values were observed when the St-Bl co-culture was employed. Lb, BI and St cultures had high counts at pH 4.5 in the three bases. The total solids affected the viability of Lb and La. The technological interest of these combinations is discussed in this article. (C) 2008 Swiss Society of Food Science and Technology. Published by Elsevier Ltd. AM rights reserved.
Resumo:
The simultaneous effects of different binary co-cultures of Lactobacillus acidophilus, Lactobacillus bulgaricus, Lactobacillus rhamnosus and Bifidobacterium lactis with Streptococcus thermophilus and of different prebiotics on the production of fermented milk were investigated in this paper. In particular, we determined and compared the kinetics of acidification of milk either as such or supplemented with 4% (w/w) maltodextrin, oligofructose and polydextrose, as well as the probiotic survival, chemical composition (pH, lactose, lactic acid and protein contents), fatty acids profile and conjugate linoleic acid (CIA) content of fermented milk after storage at 4 degrees C for 24 h. Fermented milk quality was strongly influenced both by the co-culture composition and the selected prebiotic. Depending on the co-culture, prebiotic addition to milk influenced to different extent kinetic acidification parameters. All probiotic counts were stimulated by oligofructose and polydextrose, and among these B. lactis always exhibited the highest counts in all supplemented milk samples. Polydextrose addition led to the highest post-acidification. Although the contents of the main fatty acids were only barely influenced. the highest amounts of conjugated linoleic acid (38% higher than in the control) were found in milk fermented by S. thermophilus-L. acidophilus co-culture and supplemented with maltodextrin. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The acidification rates of Lactobacillus delbrueckii subsp. bulgarieus (Lb), Lactobacillus acidophilus (La), Lactobacillus rhamnosus (Lr), and Bifidobacterium animalis subsp. lactis (Bl) in co-culture with Streptococcus thermophilus (St) were studied in Minas frescal cheese whey. Effects of the co-culture composition and the final pH values on the kinetic parameters of acidification, post-acidification and counts of health promoting micro-organisms were also studied. Fermentation time to reach pH 4.5 was longer when St-Lr co-culture was used, while St-Lb had the shortest fermentation time when compared with the other co-culture combinations. All products showed development of acidity during the storage period and lowest values had been observed employing St-Bl co-culture. The technological interest of using M. frescal cheese whey for the production of a probiotic lactic beverage is discussed in this article. (C) 2007 Swiss Society of Food Science and Technology. Published by Elsevier Ltd. All rights reserved.
Resumo:
Sensory acceptance of four trials of probiotic petit-suisse cheese was investigated. Cheeses were prepared using Streptococcus thermophilus TA 040 as starter not supplemented with any probiotic culture (T1-control), Lactobacillus acidophilus La-5 (T2), Bifidobacterium animalis subsp. lactis BL04 (T3) and L. acidophilus + B. animalis subsp. lactis (T4). Sensory acceptance tests were performed after 7 and 14 days of storage at 4 +/- 1 degrees C, using a 9-point hedonic scale to evaluate flavour, texture and overall acceptability. The population of La-5 and BL04 remained at 7.0 log CFU g(-1) and at 8.0 log CFU g(-1), respectively, during storage for up to 28 days. After 7 and 14 days of storage, cheese T4 presented the highest sensory acceptance for all attributes evaluated and differed significantly from the other cheeses (P<0.05). After 14 days of storage, cheese T3 presented the lowest acceptance and differed significantly from the other cheeses (P<0.05). The supplementation of petit-suisse cheese T4 with both La-5 and BL04 in co-culture with a starter culture resulted in a product with high probiotic populations during storage and excellent sensory acceptance. The results also showed that, when added separately, La-5 and BL04 did not affect the sensory acceptability of petit-suisse cheese.
Resumo:
The effects of acai pulp addition and different probiotic bacteria on the fatty acid profile of stirred yoghurt were examined. Skim milk was divided into two groups: one containing acai pulp and another without the fruit. Batches were inoculated with yoghurt starter culture and divided into five groups according to probiotic addition. Counts of viable microorganisms were measured at days 1, 14 and 28 of cold storage. Fatty acid profile was determined by gas chromatography at day 1. Acai pulp favoured an increase in Lactobacillus acidophilus L10, Bifidobacterium animalis ssp. lactis Bl04 and Bifidobacterium longum Bl05 counts at the end of 4 weeks of cold storage. This study demonstrated that acai pulp addition increased monounsaturated and polyunsaturated fatty acid contents in probiotic yoghurt and enhanced the production of cc-linolenic and conjugated linoleic acids during fermentation of skim milk prepared with B. animalis ssp. lactis Bl04 and B94 strains. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The influence of inulin, oligofructose and oligosaccharides from honey, combined in different proportions, on the consumers` sensory acceptance, probiotic viable count and fructan content of novel potentially synbiotic petit-suisse cheeses was investigated. Probiotic populations varied from 7.20 up to 7.69 log cfu g(-1) (Bifidobacterium animalis subsp. lactis) and from 6.08 up to 6.99 log cfu g(-1) (Lactobacillus acidophilus). The highest fructan contents were achieved by the cheese trials containing oligofructose and/or inulin (above 8.90 g 100 g(-1)). The control trial showed the lowest mean acceptance (6.63) after 28 days of refrigerated storage, whereas the highest acceptance (7.43) was observed for the trial containing 10 g 100 g(-1) oligofructose. Acceptance increased significantly during storage (P < 0.05) only for cheeses supplemented with oligoftuctose and/or inulin. Cheeses containing honey did not perform well enough compared to the cheeses with addition of inulin and/or oligofructose, and the best synbiotic petit-suisse cheese considering sensory and technological functional features was that containing oligofructose and inulin combined, therefore encouraging the commercial product use. (c) 2007 Swiss Society of Food Science and Technology. Published by Elsevier Ltd. All rights reserved.
Resumo:
Os iogurtes simbióticos, que combinam microrganismos probióticos e substâncias prebióticas, adicionados de polpa de frutas são uma tendência crescente no mercado. O fruto açaí (Euterpe edulis) se destaca pela presença de compostos bioativos, como as antocianinas. Neste contexto, o presente trabalho teve como objetivo caracterizar e avaliar os parâmetros físico-químicos e a viabilidade microbiológica de iogurte simbiótico de açaí enriquecido com inulina e adicionado de cultura probiótica de Bifidobacterium animallis subsp. lactis BB-12. As formulações de iogurte atenderam aos requisitos físico-químicos exigidos pela IN no 46/2007 do MAPA apresentando teor de cinzas de 0,86 % ± 0,10, extrato seco total de 23,18 % ± 2,59, teor de gordura de 4,16 % ± 0,31, acidez de 0,70 % ± 0,05 e pH de 4,45 ± 0,10. Entre as formulações o conteúdo fenólico total variou de 18,17 a 117,84 mg de AGE/100 g, teor de antocianinas de 1,92 a 47,88 mg/100 g e atividade antioxidante de 0,71 a 6,95 μmol Trolox/g, observando-se um aumento de acordo com o aumento do teor de polpa de açaí adicionada. Ao final de 28 dias de armazenamento a 5 °C, observou-se uma redução no teor de antocianinas e da atividade antioxidante. Verificou-se a contribuição positiva da polpa de açaí na viabilidade das bactérias láticas totais, cujas contagens variaram de 4,56 a 7,04 log UFC.g-1 e de B. lactis BB-12 que variou de 3,17 a 6,34 log UFC.g-1, favorecendo a multiplicação dessas bactérias nos iogurtes. Nas formulações com 20 e 25 % de polpa de açaí as contagens das bactérias láticas totais e probiótica mantiveram-se viáveis de acordo com a IN no 46/2007 do MAPA e a Lista de Alegação de Propriedade Funcional (Anvisa), durante os 28 dias de armazenamento a 5 oC. Concluiu-se que a adição de polpa de açaí E. edulis, inulina e B. lactis BB-12 foi tecnologicamente viável na elaboração de iogurte simbiótico de açaí, sendo uma excelente alternativa de diversificação do produto no mercado.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
To better understand the dynamic behavior of metabolic networks in a wide variety of conditions, the field of Systems Biology has increased its interest in the use of kinetic models. The different databases, available these days, do not contain enough data regarding this topic. Given that a significant part of the relevant information for the development of such models is still wide spread in the literature, it becomes essential to develop specific and powerful text mining tools to collect these data. In this context, this work has as main objective the development of a text mining tool to extract, from scientific literature, kinetic parameters, their respective values and their relations with enzymes and metabolites. The approach proposed integrates the development of a novel plug-in over the text mining framework @Note2. In the end, the pipeline developed was validated with a case study on Kluyveromyces lactis, spanning the analysis and results of 20 full text documents.
Resumo:
Functional characterization of transformed or natively present bacterial virulence proteins can be achieved employing various model systems. A prerequisite is to verify the correct expression of the transformed protein or the presence of the native protein in the microbe. Traditionally, antibodies are raised against the protein or a peptide thereof, followed by Western blot analysis or by fluorescence-activated cell sorting. Alternatively, the protein-coding gene can be fused with a downstream reporter gene, the expression of which reports the simultaneous expression of the upstream recombinant protein. Although being powerful, these methods are time consuming, especially when multiple proteins must be assessed. Here we describe a novel way to validate the expression of Gram-positive surface proteins covalently attached to the peptidoglycan. Eighteen out of the 21 known LPXTG-motif carrying cell wall-associated proteins of Staphylococcus aureus were cloned in Lactoccocus lactis either alone, in combinations or as truncated forms, and their correct expression was assessed by liquid chromatography coupled to mass spectrometry (LC-MS). The method is rapid, sensitive and precise. It can identify multiple proteins in transformed constructs without the time and cost needed for raising and testing multiple sets of antibodies.
Resumo:
BACKGROUND: There is promising but conflicting evidence to recommend the addition of probiotics to foods for prevention and treatment of allergy. Based on previous studies with fermented milk containing Lactobacillus paracasei NCC2461, we aimed to compare the effect of a powder form of the latter probiotic with the effect of a blend of Lactobacillus acidophilus ATCC SD5221 and Bifidobacterium lactis ATCC SD5219 in patients with allergic rhinitis. METHODS: A double-blind, randomized, cross-over study, involving 31 adults with allergic rhinitis to grass pollen, was performed outside the grass pollen season (registration number: NCT01233154). Subjects received each product for 4-weeks in two phases separated by a wash-out period of 6 to 8 weeks. A nasal provocation test was performed before and after each 4-week product intake period, and outcome parameters (objective and subjective clinical symptoms; immune parameters) were measured during and/or 24 hours after the test. RESULTS: Out of the 31 subject enrolled, 28 completed the study. While no effect was observed on nasal congestion (primary outcome), treatment with NCC2461 significantly decreased nasal pruritus (determined by VAS), and leukocytes in nasal fluid samples, enhanced IL-5, IL-13 and IL-10 production by peripheral blood mononuclear cells in an allergen specific manner and tended to decrease IL-5 secretion in nasal fluid, in contrast to treatment with the blend of L. acidophilus and B. lactis. CONCLUSIONS: Despite short-term consumption, NCC2461 was able to reduce subjective nasal pruritus while not affecting nasal congestion in adults suffering from grass pollen allergic rhinitis. The associated decrease in nasal fluid leukocytes and IL-5 secretion, and the enhanced IL-10 secretion in an allergen specific manner may partly explain the decrease in nasal pruritus. However, somewhat unexpected systemic immune changes were also noted. These data support the study of NCC2461 consumption in a seasonal clinical trial to further demonstrate its potentially beneficial effect.