857 resultados para LEUKOCYTE MIGRATION
Resumo:
Yellow form (I): Mr= 350.09, monoclinic, P2Jn, Z--4, a=9.525(1), b=14.762(1), c= 11.268(1),/t, fl= 107.82 (1) o , V= 1508.3 A 3 , Din(flotation in aqueous KI)= 1.539 (2), D x= 1.541 (2) g cm -3, #(Cu Ka, 2 = 1.5418 A) = 40.58 cm -~, F(000) = 712, T= 293 K, R = 8.8% for 2054 significant refections. Red form (II): Mr= 350.09, triclinic, Pi, Z=2, a=9.796(2), b= 10.750 (2), c= 7.421 (1)A, a= 95.29 (2), fl= 0108-2701/84/111901-05501.50 70.18 (1), y = 92-.76 (2) °, V= 731.9 A 3, Din(flotation in KI) = 1.585 (3), D x = 1.588 (3) g cm -3, ~t(Cu Ka, 2 = 1.5418/~) = 40.58 cm -1, F(000) = 356, T=293 K, R = 5.8% for 1866 significant reflections. There are no unusual bond distances or angles. The triazole and two phenyl rings are planar. On the basis of packing considerations the possibility of intermolecular interactions playing a role in the reactivity of the starting material is ruled out.
Resumo:
In recent years there has been an upsurge of interest in the study of organic reactions in the solid state. It is now realised that the crystalline matrix provides an extra-ordinary spatial control on the initiation and progress of these reactions. Electronic and dipolar effects which are important in solution are replaced by structural and geometric effects in solids. These 'spatial' or 'topochemical' aspects are important in understanding the mechanistic details of the reaction. In our laboratory, the thermally induced acyl migration in salicylamides from 0- to N- position in the solid state has been under study (Scheme 1). The structures of the acetyl and benzoyl derivatives (Ia,IIa, Ib and IIb) have been reported.
Resumo:
O-Acetylsalicylamide (Ia), C9H9NO3, M r =179.18, monoclinic, P2Jc, a=8.155(5), b=8.571 (2), c= 13.092 (3)A, fl=99.54 (5) ° , V= 902.4(6)A 3, Z=4, Dm=l.31, Dx=l.319gcm -3, 2(Mo Ka) = 0.71069 A,/~ = 1.08 cm -1, F(000) = 376, T = 295 K, R = 0.076 for 1604 reflections. O-Benzoylsalicylamide (Ib), C14HtlNO 3, M,=241.2, monoclinic, P2t/e, a=9.423(1), b=5.116(1), e= 26.424 (2) A, fl= 103.97 (1)% V= 1236.2 (3)/~3, Z= 4, D~ = 1.28, D x = 1.296 gcm -3, ,;L(Cu Ks) = 1.5418 A, p = 7.71 cm-', F(000) = 504, T= 295 K, R =0.050 for 2115 reflections. The dihedral angles between the amide group and the benzene ring are 39.9 ° (Ia) and 37.9 ° (Ib), whereas between the acyl group and the benzene ring they are 78.1 ° (Ia) and 93.4 ° (Ib). The differences in the packing of the two structures are brought out in terms of the observed hydrogen-bonding patterns. Based on the crystallographic results, an intramolecular mechanism for the migration of the acyl group from the O to the N position is suggested in both compounds.
Resumo:
The Wet Tropics bioregion of north Queensland has been identified as an area of global significance. The world-heritage-listed rainforests have been invaded by feral pigs (Sus scrofa) that are perceived to cause substantial environmental damage. A community perception exists of an annual altitudinal migration of the feral-pig population. The present study describes the movements of 29 feral pigs in relation to altitudinal migration (highland, transitional and lowland areas). Feral pigs were sedentary and stayed within their home range throughout a 4-year study period. No altitudinal migration was detected; pigs moved no more than a mean distance of 1.0 km from the centre of their calculated home ranges. There was no significant difference between the mean (+/- 95% confidence interval) aggregate home ranges for males (8.7 +/- 4.3 km², n = 15) and females (7.2 +/- 1.8 km², n = 14). No difference in home range was detected among the three altitudinal areas: 7.2 +/- 2.4 km² for highland, 6.2 +/- 3.9 km² for transitional and 9.9 +/- 5.3 km² for lowland areas. The aggregate mean home range for all pigs in the present study was 8.0 +/- 2.4 km². The study also assessed the influence seasons had on the home range of eight feral pigs on the rainforest boundary; home ranges did not significantly vary in size between the tropical wet and dry seasons, although the mean home range in the dry season (7.7 +/- 6.9 km²) was more than twice the home range in the wet season (2.9 +/- 0.8 km²). Heavier pigs tended to have larger home ranges. The results of the present study suggest that feral pigs are sedentary throughout the year so broad-scale control techniques need to be applied over sufficient areas to encompass individual home ranges. Control strategies need a coordinated approach if a long-term reduction in the pig population is to be achieved.
Resumo:
The prospect of widespread displacement in the Pacific as a result of climate change is becoming increasingly likely and it is possible that many will eventually need to relocate to other countries. Regional migration strategies not only offer the potential to minimise the harms of relocation, while acknowledging existing relationships of friendship and regional cooperation. This article examines the use of the language of ‘neighbourliness’ in Australia’s regional climate change strategies and argues that, while it expresses friendship, such language can also be employed to avoid the creation of stronger obligations. The article considers the international doctrine of good neighbourliness and concludes that, while international legal obligations may not yet exist, Australia should nonetheless begin planning for regional migration within the Pacific to allow people to migrate with dignity.
Resumo:
A highly polymorphic genetic locus of Stout Whiting was examined for evidence of geographical subdivision amongst samples collected from three locales in southern Queensland waters. Statistical indicators of subdivision were not significantly different from zero, suggesting that it is unlikely that the Stout Whiting resource in southern Queensland is genetically subdivided into separate stocks. It is recommended that the full-scale genetic program not proceed and that the resource be managed as a single stock.
Resumo:
Coastal seagrass habitats in tropical and subtropical regions support aggregations of resident green turtles (Chelonia mydas) from several genetically distinct breeding populations. Migration of individuals to their respective dispersed breeding sites provides a complex pattern of migratory connectivity among nesting and feeding habitats of this species. An understanding of this pattern is important in regions where the persistence of populations is under threat from anthropogenic impacts. The present study uses mitochondrial DNA and mixed-stock analyses to assess the connectivity among seven feeding grounds across the north Australian coast and adjacent areas and 17 genetically distinct breeding populations from the Indo-Pacific region. It was hypothesised that large and geographically proximate breeding populations would dominate at nearby feeding grounds. As expected, each sampled feeding area appears to support multiple breeding populations, with two aggregations dominated by a local breeding population. Geographic distance between breeding and feeding habitat strongly influenced whether a breeding population contributed to a feeding ground (wi = 0.654); however, neither distance nor size of a breeding population was a good predictor of the extent of their contribution. The differential proportional contributions suggest the impact of anthropogenic mortality at feeding grounds should be assessed on a case-by-case basis.
Resumo:
The immuno-staining patterns of skin leukocytes were investigated in three breeds of cattle: Holstein–Friesian, Brahman and Santa Gertrudis of similar age before and after tick infestation. The antibodies specific for CD45 and CD45RO reacted with cells in the skin of all Holstein–Friesian cattle but did not react with cells in the skin of any Brahman cattle. The same antibodies reacted with cells from the skin of four (CD45) and seven (CD45RO) of twelve Santa Gertrudis cattle. The antibodies specific for T cells and γδ subset of T cells recognized cells from all three breeds of cattle. The antibody specific for MHC class II molecules labelled cells of mostly irregular shape, presumably dermal dendritic cells and/or macrophages and Langerhans cells. The antibody specific for granulocytes (mAb CH138) reacted with cells only in sections cut from skin with lesions. The antibody specific for CD25+ cells labelled regularly shaped cells that showed a wide range of intensities of staining.
Resumo:
Turnip mosaic virus (TuMV) is a potyvirus that is transmitted by aphids and infects a wide range of plant species. We investigated the evolution of this pathogen by collecting 32 isolates of TuMV, mostly from Brassicaceae plants, in Australia and New Zealand. We performed a variety of sequence-based phylogenetic and population genetic analyses of the complete genomic sequences and of three non-recombinogenic regions of those sequences. The substitution rates, divergence times and phylogeographical patterns of the virus populations were estimated. Six inter- and seven intralineage recombination-type patterns were found in the genomes of the Australian and New Zealand isolates, and all were novel. Only one recombination-type pattern has been found in both countries. The Australian and New Zealand populations were genetically different, and were different from the European and Asian populations. Our Bayesian coalescent analyses, based on a combination of novel and published sequence data from three nonrecombinogenic protein-encoding regions, showed that TuMV probably started to migrate from Europe to Australia and New Zealand more than 80 years ago, and that distinct populations arose as a result of evolutionary drivers such as recombination. The basal-B2 subpopulation in Australia and New Zealand seems to be older than those of the world-B2 and -B3 populations. To our knowledge, our study presents the first population genetic analysis of TuMV in Australia and New Zealand. We have shown that the time of migration of TuMV correlates well with the establishment of agriculture and migration of Europeans to these countries.
Resumo:
The juvenile sea squirt wanders through the sea searching for a suitable rock or hunk of coral to cling to and make its home for life. For this task it has a rudimentary nervous system. When it finds its spot and takes root, it doesn't need its brain any more so it eats it. It's rather like getting tenure. Daniel C. Dennett (from Consciousness Explained, 1991) The little sea squirt needs its brain for a task that is very simple and short. When the task is completed, the sea squirt starts a new life in a vegetative state, after having a nourishing meal. The little brain is more tightly structured than our massive primate brains. The number of neurons is exact, no leeway in neural proliferation is tolerated. Each neuroblast migrates exactly to the correct position, and only a certain number of connections with the right companions is allowed. In comparison, growth of a mammalian brain is a merry mess. The reason is obvious: Squirt brain needs to perform only a few, predictable functions, before becoming waste. The more mobile and complex mammals engage their brains in tasks requiring quick adaptation and plasticity in a constantly changing environment. Although the regulation of nervous system development varies between species, many regulatory elements remain the same. For example, all multicellular animals possess a collection of proteoglycans (PG); proteins with attached, complex sugar chains called glycosaminoglycans (GAG). In development, PGs participate in the organization of the animal body, like in the construction of parts of the nervous system. The PGs capture water with their GAG chains, forming a biochemically active gel at the surface of the cell, and in the extracellular matrix (ECM). In the nervous system, this gel traps inside it different molecules: growth factors and ECM-associated proteins. They regulate the proliferation of neural stem cells (NSC), guide the migration of neurons, and coordinate the formation of neuronal connections. In this work I have followed the role of two molecules contributing to the complexity of mammalian brain development. N-syndecan is a transmembrane heparan sulfate proteoglycan (HSPG) with cell signaling functions. Heparin-binding growth-associated molecule (HB-GAM) is an ECM-associated protein with high expression in the perinatal nervous system, and high affinity to HS and heparin. N-syndecan is a receptor for several growth factors and for HB-GAM. HB-GAM induces specific signaling via N-syndecan, activating c-Src, calcium/calmodulin-dependent serine protein kinase (CASK) and cortactin. By studying the gene knockouts of HB-GAM and N-syndecan in mice, I have found that HB-GAM and N-syndecan are involved as a receptor-ligand-pair in neural migration and differentiation. HB-GAM competes with the growth factors fibriblast growth factor (FGF)-2 and heparin-binding epidermal growth factor (HB-EGF) in HS-binding, causing NSCs to stop proliferation and to differentiate, and affects HB-EGF-induced EGF receptor (EGFR) signaling in neural cells during migration. N-syndecan signaling affects the motility of young neurons, by boosting EGFR-mediated cell migration. In addition, these two receptors form a complex at the surface of the neurons, probably creating a motility-regulating structure.