971 resultados para LDH-C4
Resumo:
It is believed that C4 to C7 hydrocarbons in petroleum are formed by the cracking of organic matter at depths generally exceeding 1,000 m at temperatures in excess of 50 °C (Cordel, 1972; Dow, 1974; Tissot et al., 1974)). Also, none of the alkanes in the butane-heptane range are formed biologically as far as is known at present. Consequently, it is thought that they do not occur in shallow, Recent sediments. In 1962, I analysed 22 samples of Recent sediments from 7 different environments and verified that these hydrocarbons were not present at the p.p.m. level (Dunton and Hunt, 1962) although traces of a few hydrocarbons such as butane, isobutane, isopentane and n-heptane have been found (Sokolov, 1957; Veber and Turkeltaub, 1958; Erdman et al., 1958; Emery and Hoggan, 1958). No identification of individual hexanes or heptanes has been reported except when there has been clear evidence of seepage from deeper source sediments (McIver, 1973).
Resumo:
Background: The cysteinyl-leukotrienes (cys-LTs) are proinflammatory mediators that are important in the pathophysiology of asthma. LTC4 synthase is a key enzyme in the cys-LT biosynthetic pathway, and studies in small populations have suggested that a promoter polymorphism (A(-444)C) in the gene might be associated with asthma severity and aspirin intolerance. Objective: We sought to screen the LTC4 synthase gene for polymorphisms and to determine whether there is an association between these polymorphisms and asthma severity or aspirin sensitivity in a large, well-phenotyped population and to determine whether this polymorphism is functionally relevant. Methods: The coding regions of the LTC4 synthase gene were screened for polymorphisms and the A(-444)C polymorphism was analyzed in a large Australian white adult population of mild (n = 282), moderate (n = 236), and severe asthmatic subjects (n = 86) and nonasthmatic subjects (n = 458), as well as in aspirin-intolerant asthmatic subjects (n = 67). The functional activity of the promoter polymorphism was investigated by transient transfection of HL-60 cells with a promoter construct. Results: A new polymorphism was identified in intron 1 of the gene (IVS1-10c>a) but was not associated with asthma. Association studies showed that the A(-444)C polymorphism was weakly associated with asthma per se, but there was no association between the C-444 allele and chronic asthma severity or aspirin intolerance. A meta-analysis of all the genetic studies conducted to date found significant between-study heterogeneity in C-444 allele frequencies within different clinical subgroups. In vitro functional studies showed no significant differences in transcription efficiency between constructs containing the A(-444) allele or the C-444 allele. Conclusions: Our data confirm that, independent of transcriptional activity, the C-444 allele in the LTC4 synthase gene is weakly associated with the asthma phenotype, but it is not related to disease severity or aspirin intolerance.
Resumo:
The formation of MgA1 layered double hydroxide (LDH) from physically mixed MgO and Al2O3 oxides upon hydrothermal treatment has been extensively investigated, and a formation mechanism has been proposed. We observed that the formation of LDH from the oxide mixture occurs upon heating at 110 degreesC. In general, LDH is the major component while the minor phases are mainly determined by the initial pH of the oxide suspension as well as the MgO/Al2O3 ratio. The neutrality in the initial suspension results in a minor Mg(OH)(2) as the impure phase, while the alkalinity in the suspension keeps some MgO unreacted throughout the whole hydrothermal treatment. We suggest that MgO and Al2O3 be hydrated into Mg(OH)(2) and Al(OH)(3), respectively, in the initial stage for all samples. We further Suggest that in the neutral condition Mg(OH)2 be quickly dissociated to Mg2+ and OH- which then deposit on the surface of Al(OH)(3)/Al2O3 to form a M-Al pre-LDH material. Al(OH)(4)(-), ionized from Al(OH)(3) in the basic solution, deposits on the surface of Mg(OH)(2)/MgO to result in a similar MgAl pre-LDH material. Such a pre-LDH material is then well crystallized upon continuous heating via the diffusion of metal ions in the solid lattice. Such a dissociation-deposition-diffusion mechanism via two pathways has been supported by the phase composition, morphological features of crystallites, and [Mg]/[Al] ratios on the crystallite surface. and presumably applied to the general formation of LDHs with various synthetic methods. Such as coprecipitation, homogeneous preparation, and reconstruction.
Resumo:
Belowground biomass is a critical factor regulating ecosystem functions of coastal marshes, including soil organic matter (SOM) accumulation and the ability of these systems to keep pace with sea-level rise. Nevertheless, belowground biomass responses to environmental and vegetation changes have been given little emphasis marsh studies. Here we present a method using stable carbon isotopes and color to identify root and rhizomes of Schoenoplectus americanus (Pers.) Volk. ex Schinz and R. Keller (C3) and Spartina patens (Ait.) Muhl. (C4) occurring in C3− and C4-dominated communities in a Chesapeake Bay brackish marsh. The functional significance of the biomass classes we identified is underscored by differences in their chemistry, depth profiles, and variation in biomass and profiles relative to abiotic and biotic factors. C3 rhizomes had the lowest concentrations of cellulose (29.19%) and lignin (14.43%) and the lowest C:N (46.97) and lignin:N (0.16) ratios. We distinguished two types of C3 roots, and of these, the dark red C3 roots had anomalously high C:N (195.35) and lignin:N (1.14) ratios, compared with other root and rhizome classes examined here and with previously published values. The C4-dominated community had significantly greater belowground biomass (4119.1 g m−2) than the C3-dominated community (3256.9 g m−2), due to greater total root biomass and a 3.6-fold higher C3-root:rhizome ratio in the C4-dominated community. C3 rhizomes were distributed significantly shallower in the C4-dominated community, while C3 roots were significantly deeper. Variability in C3 rhizome depth distributions was explained primarily by C4 biomass, and C3 roots were explained primarily by water table height. Our results suggest that belowground biomass in this system is sensitive to slight variations in water table height (across an 8 cm range), and that the reduced overlap between C3 and C4 root profiles in the C4-dominated community may account for the greater total root biomass observed in that community. Given that future elevated atmospheric CO2 and accelerated sea-level rise are likely to increase C3 abundance in Atlantic and Gulf coast marshes, investigations that quantify how patterns of C3 and C4 belowground biomass respond to environmental and biological factors stand to improve our understanding of ecosystem-wide impacts of global changes on coastal wetlands.
Resumo:
Mapping the abundance of 13C in leaf-wax components in surface sediments recovered from the seafloor off northwest Africa (0-35°N) reveals a clear pattern of delta13C distribution, indicating systematic changes in the proportions of terrestrial C3 and C4 plant input. At 20°N latitude, we find that isotopically enriched products characteristic of C4 plants account for more than 50% of the terrigenous inputs. This signal extends westward beneath the path of the dust-laden Sahara Air Layer (SAL). High C4 contributions, apparently carried by January trade winds, also extend far into the Gulf of Guinea. Similar distributions are obtained if summed pollen counts for the Chenopodiaceae-Amaranthaceae and the Poaceae are used as an independent C4 proxy. We conclude that the specificity of the latitudinal distribution of vegetation in North West Africa and the pathways of the wind systems (trade winds and SAL) are responsible for the observed isotopic patterns observed in the surface sediments. Molecular-isotopic maps on the marine-sedimentary time horizons (e.g., during the last glacial maximum) are thus a robust tool for assessing the phytogeographic changes on the tropical and sub-tropical continents, which have important implications for the changes in climatic and atmospheric conditions.
Resumo:
Atmospheric dust samples collected along a transect off the West African coast have been investigated for their lipid content and compound-specific stable carbon isotope compositions. The saturated hydrocarbon fractions of the organic solvent extracts consist mainly of long-chain n-alkanes derived from epicuticular wax coatings of terrestrial plants. Backward trajectories for each sampling day and location were calculated using a global atmospheric circulation model. The main atmospheric transport took place in the low-level trade-wind layer, except in the southern region, where long-range transport in the mid-troposphere occurred. Changes in the chain length distributions of the n-alkane homologous series are probably related to aridity, rather than temperature or vegetation type. The carbon preference of the leaf-wax n-alkanes shows significant variation, attributed to a variable contribution of fossil fuel- or marine-derived lipids. The effect of this nonwax contribution on the d13C values of the two dominant n-alkanes in the aerosols, n-C29 and n-C31 alkane, is, however, insignificant. Their d13C values were translated into a percentage of C4 vs. C3 plant type contribution, using a two-component mixing equation with isotopic end-member values from the literature. The data indicate that only regions with a predominant C4 type vegetation, i.e. the Sahara, the Sahel, and Gabon, supply C4 plant-derived lipids to dust organic matter. The stable carbon isotopic compositions of leaf-wax lipids in aerosols mainly reflect the modern vegetation type along their transport pathway. Wind abrasion of wax particles from leaf surfaces, enhanced by a sandblasting effect, is most probably the dominant process of terrigenous lipid contribution to aerosols.
Resumo:
La invención está dirigida al desarrollo de un método y creación de un kit para la cuantificación del efecto citotóxico y/o viabilidad celular ante agentes químicos (elemento, compuesto, mezcla o fármaco en cualquier de sus estados) y/o físicos (i.e. iluminación, temperatura, turbulencia, fluidodinámica, etc.) que puedan producir rotura de la membrana celular. El kit mide la liberación de la enzima citoplasmática lactato deshidrogenasa (LDH) proveniente de células muertas y/o lisadas. Esta enzima cataliza la oxidación del lactato, presente en el kit, a piruvato. Durante la reacción, el NAD+, también presente en el kit, es reducido a NADH. La concentración de LDH, se cuantifica a través de la fluorescencia del NADH formado. Las mediciones indirectas de la enzima LDH se realizan en el sobrenadante de cultivos celulares. El método es aplicable tanto en medios inorgánicos para microalgas como en medios comerciales para células animales y de insecto.
Resumo:
Resultados anteriores sobre a especificidade hospedeira na infecção de gramíneas com Azospirillum spp foram confirmados no presente trabalho, com maior número de espécies. No solo ocorreram as duas espécies de Azospirillum - A. brasilense e A. lipoferum - e, ainda estirpes denitrificantes (nir+) e não denitrificantes (nir-). Os isolamentos de raízes esterilizadas de cereais de clima temperado com via fotossintética C3 (trigo, cevada, aveia, e centeio), foram predominantemente da espécie. A. brasilense; e os de raízes esterilizadas de gramíneas tropicais com via C4 foram predominantemente da espécie A. lipoferum. Em ambos os casos parece que as plantas, especialmente as C3, apresentam seletividade para estirpes não denitrificantes. A única exceção nestas observações foi a cana-de-açúcar, que se comportou como os cereais temperados. Por outro lado, a tiririca, uma Cyperacea com via C4, foi infectada por A. lipoferum, como as gramíneas com via C4.
Resumo:
The infrared (IR) spectroscopic data for a series of eleven heteroleptic bis(phthalocyaninato) rare earth complexes MIII(Pc)[Pc(α-OC5H11)4] (M = Sm–Lu, Y) [H2Pc = unsubstituted phthalocyanine, H2Pc(α-OC5H11)4 = 1,8,15,22-tetrakis(3-pentyloxy)phthalocyanine] have been collected with 2 cm−1 resolution. Raman spectroscopic properties in the range of 500–1800 cm−1 for these double-decker molecules have also been comparatively studied using laser excitation sources emitting at 632.8 and 785 nm. Both the IR and Raman spectra for M(Pc)[Pc(α-OC5H11)4] are more complicated than those of homoleptic bis(phthalocyaninato) rare earth analogues due to the decreased molecular symmetry of these double-decker compounds, namely C4. For this series, the IR Pc√− marker band appears as an intense absorption at 1309–1317 cm−1, attributed to the pyrrole stretching. With laser excitation at 632.8 nm, Raman vibrations derived from isoindole ring and aza stretchings in the range of 1300–1600 cm−1 are selectively intensified. In contrast, when excited with laser radiation of 785 nm, the ring radial vibrations of isoindole moieties and dihedral plane deformations between 500 and 1000 cm−1 for M(Pc)[Pc(α-OC5H11)4] intensify to become the strongest scatterings. Both techniques reveal that the frequencies of pyrrole stretching, isoindole breathing, isoindole stretchings, aza stretchings and coupling of pyrrole and aza stretchings depend on the rare earth ionic size, shifting to higher energy along with the lanthanide contraction due to the increased ring-ring interaction across the series. The assignments of the vibrational bands for these compounds have been made and discussed in relation to other unsubstituted and substituted bis(phthalocyaninato) rare earth analogues, such as M(Pc)2 and M(OOPc)2 [H2OOPc = 2,3,9,10,16,17,23,24-octakis(octyloxy)phthalocyanine].
Resumo:
We report a theoretical study of the multiple oxidation states (1+, 0, 1−, and 2−) of a meso,meso-linked diporphyrin, namely bis[10,15,20-triphenylporphyrinatozinc(II)-5-yl]butadiyne (4), using Time-Dependent Density Functional Theory (TDDFT). The origin of electronic transitions of singlet excited states is discussed in comparison to experimental spectra for the corresponding oxidation states of the close analogue bis{10,15,20-tris[3‘,5‘-di-tert-butylphenyl]porphyrinatozinc(II)-5-yl}butadiyne (3). The latter were measured in previous work under in situ spectroelectrochemical conditions. Excitation energies and orbital compositions of the excited states were obtained for these large delocalized aromatic radicals, which are unique examples of organic mixed-valence systems. The radical cations and anions of butadiyne-bridged diporphyrins such as 3 display characteristic electronic absorption bands in the near-IR region, which have been successfully predicted with use of these computational methods. The radicals are clearly of the “fully delocalized” or Class III type. The key spectral features of the neutral and dianionic states were also reproduced, although due to the large size of these molecules, quantitative agreement of energies with observations is not as good in the blue end of the visible region. The TDDFT calculations are largely in accord with a previous empirical model for the spectra, which was based simplistically on one-electron transitions among the eight key frontier orbitals of the C4 (1,4-butadiyne) linked diporphyrins.