998 resultados para LARGE TRANSVERSE-MOMENTUM
Resumo:
Results of a search for decays of massive particles to fully hadronic final states are presented. This search uses 20.3 fb−1 of data collected by the ATLAS detector in s√=8TeV proton--proton collisions at the LHC. Signatures based on high jet multiplicities without requirements on the missing transverse momentum are used to search for R-parity-violating supersymmetric gluino pair production with subsequent decays to quarks. The analysis is performed using a requirement on the number of jets, in combination with separate requirements on the number of b-tagged jets, as well as a topological observable formed from the scalar sum of the mass values of large-radius jets in the event. Results are interpreted in the context of all possible branching ratios of direct gluino decays to various quark flavors. No significant deviation is observed from the expected Standard Model backgrounds estimated using jet-counting as well as data-driven templates of the total-jet-mass spectra. Gluino pair decays to ten or more quarks via intermediate neutralinos are excluded for a gluino with mass mg~<1TeV for a neutralino mass mχ~01=500GeV. Direct gluino decays to six quarks are excluded for mg~<917GeV for light-flavor final states, and results for various flavor hypotheses are presented.
Resumo:
The results of a dedicated search for pair production of scalar partners of charm quarks are reported. The search is based on an integrated luminosity of 20.3fb−1 of pp collisions at s√=8 TeV recorded with the ATLAS detector at the LHC. The search is performed using events with large missing transverse momentum and at least two jets, where the two leading jets are each tagged as originating from c-quarks. Events containing isolated electrons or muons are vetoed. In an R-parity-conserving minimal supersymmetric scenario in which a single scalar-charm state is kinematically accessible, and where it decays exclusively into a charm quark and a neutralino, 95% confidence-level upper limits are obtained in the scalar-charm—neutralino mass plane such that, for neutralino masses below 200 GeV, scalar-charm masses up to 490 GeV are excluded.
Resumo:
This Letter presents a search at the LHC for s-channel single top-quark production in proton-proton collisions at a centre-of-mass energy of 8 TeV. The analyzed data set was recorded by the ATLAS detector and corresponds to an integrated luminosity of 20.3 fb−1. Selected events contain one charged lepton, large missing transverse momentum and exactly two b-tagged jets. A multivariate event classifier based on boosted decision trees is developed to discriminate s-channel single top-quark events from the main background contributions. The signal extraction is based on a binned maximum-likelihood fit of the output classifier distribution. The analysis leads to an upper limit on the s-channel single top-quark production cross-section of 14.6 pb at the 95% confidence level. The fit gives a cross-section of σs=5.0±4.3 pb, consistent with the Standard Model expectation.
Resumo:
A search for heavy leptons decaying to a Z boson and an electron or a muon is presented. The search is based on pp collision data taken at s√=8 TeV by the ATLAS experiment at the CERN Large Hadron Collider, corresponding to an integrated luminosity of 20.3 fb−1. Three high-transverse-momentum electrons or muons are selected, with two of them required to be consistent with originating from a Z boson decay. No significant excess above Standard Model background predictions is observed, and 95% confidence level limits on the production cross section of high-mass trilepton resonances are derived. The results are interpreted in the context of vector-like lepton and type-III seesaw models. For the vector-like lepton model, most heavy lepton mass values in the range 114-176 GeV are excluded. For the type-III seesaw model, most mass values in the range 100-468 GeV are excluded.
Resumo:
Measurements of the total and differential cross sections of Higgs boson production are performed using 20.3 fb−1 of pp collisions produced by the Large Hadron Collider at a center-of-mass energy of s√=8 TeV and recorded by the ATLAS detector. Cross sections are obtained from measured H→γγ and H→ZZ∗→4ℓ event yields, which are combined accounting for detector efficiencies, fiducial acceptances and branching fractions. Differential cross sections are reported as a function of Higgs boson transverse momentum, Higgs boson rapidity, number of jets in the event, and transverse momentum of the leading jet. The total production cross section is determined to be σpp→H=33.0±5.3(stat)±1.6(sys)pb. The measurements are compared to state-of-the-art predictions.
Resumo:
A search for the pair-production of heavy leptons (N0,L±) predicted by the type-III seesaw theory formulated to explain the origin of small neutrino masses is presented. The decay channels N0→W±l∓ (ℓ=e,μ,τ) and L±→W±ν (ν=νe,νμ,ντ) are considered. The analysis is performed using the final state that contains two leptons (electrons or muons), two jets from a hadronically decaying W boson, and large missing transverse momentum. The data used in the measurement correspond to an integrated luminosity of 20.3fb−1 of pp collisions at s√=8 TeV collected by the ATLAS detector at the LHC. No evidence of heavy lepton pair-production is observed. Heavy leptons with masses below 325--540 GeV are excluded at the 95% confidence level, depending on the theoretical scenario considered.
Resumo:
A search for pair production of vector-like quarks, both up-type (T) and down-type (B), as well as for four-top-quark production, is presented. The search is based on pp collisions at s√=8 TeV recorded in 2012 with the ATLAS detector at the CERN Large Hadron Collider and corresponding to an integrated luminosity of 20.3 fb−1. Data are analysed in the lepton-plus-jets final state, characterised by an isolated electron or muon with high transverse momentum, large missing transverse momentum and multiple jets. Dedicated analyses are performed targeting three cases: a T quark with significant branching ratio to a W boson and a b-quark (TT¯→Wb+X), and both a T quark and a B quark with significant branching ratio to a Higgs boson and a third-generation quark (TT¯→Ht+X and BB¯→Hb+X respectively). No significant excess of events above the Standard Model expectation is observed, and 95% CL lower limits are derived on the masses of the vector-like T and B quarks under several branching ratio hypotheses assuming contributions from T→Wb, Zt, Ht and B→Wt, Zb, Hb decays. The 95% CL observed lower limits on the T quark mass range between 715 GeV and 950 GeV for all possible values of the branching ratios into the three decay modes, and are the most stringent constraints to date. Additionally, the most restrictive upper bounds on four-top-quark production are set in a number of new physics scenarios.
Resumo:
A measurement of the top--antitop (tt¯) charge asymmetry is presented using data corresponding to an integrated luminosity of 4.6 fb−1 of LHC pp collisions at a centre-of-mass energy of 7 TeV collected by the ATLAS detector. Events with two charged leptons, at least two jets and large missing transverse momentum are selected. Two observables are studied: AℓℓC based on the identified charged leptons, and Att¯C, based on the reconstructed tt¯ final state. The asymmetries are measured to be AℓℓC=0.024±0.015 (stat.)±0.009 (syst.), Att¯C=0.021±0.025 (stat.)±0.017 (syst.). The measured values are in agreement with the Standard Model predictions.
Resumo:
The results of a search for charged Higgs bosons decaying to a τ lepton and a neutrino, H±→τ±ν, are presented. The analysis is based on 19.5 fb−1 of proton--proton collision data at s√=8 TeV collected by the ATLAS experiment at the Large Hadron Collider. Charged Higgs bosons are searched for in events consistent with top-quark pair production or in associated production with a top quark. The final state is characterised by the presence of a hadronic τ decay, missing transverse momentum, b-tagged jets, a hadronically decaying W boson, and the absence of any isolated electrons or muons with high transverse momenta. The data are consistent with the expected background from Standard Model processes. A statistical analysis leads to 95% confidence-level upper limits on the product of branching ratios B(t→bH±)×B(H±→τ±ν), between 0.23% and 1.3% for charged Higgs boson masses in the range 80--160 GeV. It also leads to 95% confidence-level upper limits on the production cross section times branching ratio, σ(pp→tH±+X)×B(H±→τ±ν), between 0.76 pb and 4.5 fb, for charged Higgs boson masses ranging from 180 GeV to 1000 GeV. In the context of different scenarios of the Minimal Supersymmetric Standard Model, these results exclude nearly all values of tanβ above one for charged Higgs boson masses between 80 GeV and 160 GeV, and exclude a region of parameter space with high tanβ for H± masses between 200 GeV and 250 GeV.
Resumo:
The inclusive jet cross-section is measured in proton--proton collisions at a centre-of-mass energy of 7 TeV using a data set corresponding to an integrated luminosity of 4.5 fb−1 collected with the ATLAS detector at the Large Hadron Collider in 2011. Jets are identified using the anti-kt algorithm with radius parameter values of 0.4 and 0.6. The double-differential cross-sections are presented as a function of the jet transverse momentum and the jet rapidity, covering jet transverse momenta from 100 GeV to 2 TeV. Next-to-leading-order QCD calculations corrected for non-perturbative effects and electroweak effects, as well as Monte Carlo simulations with next-to-leading-order matrix elements interfaced to parton showering, are compared to the measured cross-sections. A quantitative comparison of the measured cross-sections to the QCD calculations using several sets of parton distribution functions is performed.
Resumo:
This paper presents cross sections for the production of a W boson in association with jets, measured in proton--proton collisions at s√=7 TeV with the ATLAS experiment at the Large Hadron Collider. With an integrated luminosity of 4.6fb−1, this data set allows for an exploration of a large kinematic range, including jet production up to a transverse momentum of 1 TeV and multiplicities up to seven associated jets. The production cross sections for W bosons are measured in both the electron and muon decay channels. Differential cross sections for many observables are also presented including measurements of the jet observables such as the rapidities and the transverse momenta as well as measurements of event observables such as the scalar sums of the transverse momenta of the jets. The measurements are compared to numerous QCD predictions including next-to-leading-order perturbative calculations, resummation calculations and Monte Carlo generators.
Resumo:
The performance of the ATLAS muon trigger system has been evaluated with proton--proton collision data collected in 2012 at the Large Hadron Collider at a centre-of-mass energy of 8 TeV. The performance was primarily evaluated using events containing a pair of muons from the decay of Z bosons. The efficiency is measured for the single-muon trigger for a kinematic region of the transverse momentum pT between 25 and 100 GeV, with a statistical uncertainty of less than 0.01% and a systematic uncertainty of 0.6%. The performance is also compared in detail to the predictions from simulation. The efficiency was measured over a wide pT range (a few GeV to several hundred GeV) by using muons from J/ψ mesons,W bosons, and top and antitop quarks. It showed highly uniform and stable performance.
Resumo:
The paper presents studies of Bose--Einstein Correlations (BEC) for pairs of like-sign charged particles measured in the kinematic range pT> 100 MeV and |η|< 2.5 in proton--proton collisions at centre-of-mass energies of 0.9 and 7 TeV with the ATLAS detector at the CERN Large Hadron Collider. The integrated luminosities are approximately 7 μb−1, 190 μb−1 and 12.4 nb−1 for 0.9 TeV, 7 TeV minimum-bias and 7 TeV high-multiplicity data samples, respectively. The multiplicity dependence of the BEC parameters characterizing the correlation strength and the correlation source size are investigated for charged-particle multiplicities of up to 240. A saturation effect in the multiplicity dependence of the correlation source size is observed using the high-multiplicity 7 TeV data sample. The dependence of the BEC parameters on the average transverse momentum of the particle pair is also investigated.
Resumo:
An analysis is presented of events containing jets including at least one b-tagged jet, sizeable missing transverse momentum, and at least two leptons including a pair of the same electric charge, with the scalar sum of the jet and lepton transverse momenta being large. A data sample with an integrated luminosity of 20.3 fb−1 of pp collisions at s√=8 TeV recorded by the ATLAS detector at the Large Hadron Collider is used. Standard Model processes rarely produce these final states, but there are several models of physics beyond the Standard Model that predict an enhanced rate of production of such events; the ones considered here are production of vector-like quarks, enhanced four-top-quark production, pair production of chiral b′-quarks, and production of two positively charged top quarks. Eleven signal regions are defined; subsets of these regions are combined when searching for each class of models. In the three signal regions primarily sensitive to positively charged top quark pair production, the data yield is consistent with the background expectation. There are more data events than expected from background in the set of eight signal regions defined for searching for vector-like quarks and chiral b′-quarks, but the significance of the discrepancy is less than two standard deviations. The discrepancy reaches 2.5 standard deviations in the set of five signal regions defined for searching for four-top-quark production. The results are used to set 95% CL limits on various models.
Resumo:
A summary is presented of ATLAS searches for gluinos and first- and second-generation squarks in final states containing jets and missing transverse momentum, with or without leptons or b-jets, in the s√=8 TeV data set collected at the Large Hadron Collider in 2012. This paper reports the results of new interpretations and statistical combinations of previously published analyses, as well as a new analysis. Since no significant excess of events over the Standard Model expectation is observed, the data are used to set limits in a variety of models. In all the considered simplified models that assume R-parity conservation, the limit on the gluino mass exceeds 1150 GeV at 95% confidence level, for an LSP mass smaller than 100 GeV. Furthermore, exclusion limits are set for left-handed squarks in a phenomenological MSSM model, a minimal Supergravity/Constrained MSSM model, R-parity-violation scenarios, a minimal gauge-mediated supersymmetry breaking model, a natural gauge mediation model, a non-universal Higgs mass model with gaugino mediation and a minimal model of universal extra dimensions.