997 resultados para LANDFORMS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Geologic and geomorphologic mapping are important ways to characterize the environment, because they look to describe and diagnose landforms, identifying and understanding the morphogenetic processes, making it possible to comprehend the landscape dynamic. This work aimed to make a geological and geomorphological map, in a 1:10.000 scale, of the Morro Azul, the main elevation in the city of Limeira – SP, with the application of photogeological techniques and field descriptions. As final products are presented a geological-geomorphological map, a topographical profile, a slope map, beyond the main characteristics of the geological-geomorphological units of the area. This study presents itself as a preliminary work, and can serve as a subsidy to more specific works, such as geotechnics, environmental problems, among others

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Geociências e Meio Ambiente - IGCE

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Produção Vegetal) - FCAV

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Landscape is the result of interaction between tectonic, weathering and pedogenetic processes, so it is necessary to understand the morphogenesis and relate it to the landforms and landscape. Therefore, this project comprises a geomorphological characterization of some areas associated with the fault zones of Taubaté Basin, at the surroundings of the cities from São José dos Campos to Taubaté SP, emphasizing the Quaternary landscape evolution, where the normal faults played an important role in controling and they were originated, mostly, from the reactivation of Precambrian fault zones by tectonic action. The rift valley scenario is highlighted in the region, identifying the sharp relief from the basin boundary, featuring both Serra do Mar and Serra da Mantiqueira, and a central depressed area where the Taubaté Basin is located. Deforming or modifying basin features are identified, promoting the rearrangement and conditioning of the drainage network and relief, which indicates the presence of morphostructures, conducting to the deduction of a late tectonic process

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Ciência do Solo) - FCAV

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper examines the daily morphological responses of Sununga Beach, an embayed beach located on the south-eastern Brazilian coast, to storms in the South Atlantic Ocean. The main mechanisms and timing of beach erosion and accretion, the relationship between wave height and direction, and beach volume changes are considered, to establish a qualitative model for short-term embayed beach morphological changes. The methodology consisted of daily topographic surveys during the month of May in 2001, 2002, and 2003, using an RTK-GPS (real-time kinematics global positioning system). Weather and wave model results were used to correlate hydrodynamics and beach morphology. The results indicate that the morphodynamics of Sununga Beach are characterized by a process of beach rotation, which occurred more or less clearly during all three surveys. Unlike what has been commonly described in the literature for longer time intervals and alternations of fair and stormy weather, the beach rotation processes on Sununga Beach occurred under conditions of moderate-to-high wave energy change (wave heights greater than 2 m). An integrated evaluation of the behaviour of the meteorological aspects, together with beach morphology, enabled us to recognize that extra-tropical cyclones were the most important agent in remobilizing the beach planform, whether in beach rotation or in cross-shore erosion. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mountain centered glaciers have played a major role throughout the last three million years in the Scandinavian mountains. The climatic extremes, like the present warm interglacial or cold glacial maxima, are very short-lived compared to the periods of intermediate climate conditions, characterized by the persistence of mountain based glaciers and ice fields of regional size. These have persisted in the Scandinavian mountains for about 65% of the Quaternary. Mountain based glaciers thus had a profound impact on large-scale geomorphology, which is manifested in large-scale glacial landforms such as fjords, glacial lakes and U-shaped valleys in and close to the mountain range. Through a mapping of glacial landforms in the northern Scandinavian mountain range, in particular a striking set of lateral moraines, this thesis offers new insights into Weichselian stages predating the last glacial maximum. The aerial photograph mapping and field evidence yield evidence that these lateral moraines were overridden by glacier ice subsequent to their formation. The lateral moraines were dated using terrestrial cosmogenic nuclide techniques. Although the terrestrial cosmogenic nuclide signature of the moraines is inconclusive, an early Weichselian age is tentatively suggested through correlations with other landforms and stratigraphical archives in the region. The abundance and coherent spatial pattern of the lateral moraines also allow a spatial reconstruction of this ice field. The ice field was controlled by topography and had nunataks protruding also where it was thickest close to the elevation axis of the Scandinavian mountain range. Outlet glaciers discharged into the Norwegian fjords and major valleys in Sweden. The process by which mountain based glaciers grow into an ice sheet is a matter of debate. In this thesis, a feedback mechanism between debris on the ice surface and ice sheet growth is presented. In essence, the growth of glaciers and ice sheets may be accelerated by an abundance of debris in their ablation areas. This may occur when the debris cover on the glacier surface inhibits ablation, effectively increasing the glaciers mass balance. It is thus possible that a dirty ablation area may cause the glacier to advance further than a clean glacier under similar conditions. An ice free period of significant length allows soil production through weathering, frost shattering, and slope processes. As glaciers advance through this assemblage of sediments, significant amounts of debris end up on the surface due to both mass wastage and subglacial entrainment. Evidence that this chain of events may occur, is given by large expanses of hummocky moraine (local name Veiki moraine) in the northern Swedish lowlands. Because the Veiki moraine has been correlated with the first Weichselian advance following the Eemian, it implies a heavily debris charged ice sheet emanating from the mountain range and terminating in a stagnant fashion in the lowlands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[EN] From the moment a granitic magma begins to cool until it is solidified it is subjected to stress and strain, producing the various discontinuities that can be seen in the finally exposed rock. When as a result of the erosion of superincumbent rocks the granite is at or near the land surface these discontinuities are exploited by weathering. Such features, and particularly those related to fractures or diaclases, outline forms that are considered here as primary endogenous forms. Once the rock is in the earth surface, various external agencies first soil weathering and later others as gravity, rivers, waves, glaciers, frost, wind, attack the rock to produce new suites of forms that are considered here as primary exogenous either etched or subaerial features. Such primary forms, both endogenous and exogenous, can evolve morphologically further as a result of subaerial weathering and erosion, becoming secondary endogenous or secondary exogenous forms. Exceptionally, some primary, either exogenous or endogenous, features can survive to successive morphogenetic episodes either below sedimentary burial or just subaerially without appreciable modification by external agencies being considered as inherited forms. Only the discernment of all these types of landforms allows the complete understanding of the geomorphological history of the area in which they occur.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Calabrian-Peloritani arc represents key site to unravel evolution of surface processes on top of subducting lithosphere. During the Pleistocene, in fact the arc uplifted at rate of the order of about 1mm/yr, forming high-standing low-relief upland (figure 2). Our study is focused on the relationship between tectonic and land evolution in the Sila Massif, Messina strait and Peloritani Mts. Landforms reflect a competition between tectonic, climatic, and surficial processes. Many landscape evolution models that explore feedbacks between these competing processes, given steady forcing, predict a state of erosional equilibrium, where the rates of river incision and hillslope erosion balance rock uplift. It has been suggested that this may be the final constructive stage of orogenic systems. Assumptions of steady erosion and incision are used in the interpretation of exhumation and uplift rates from different geologic data, and in the formulation of fluvial incision and hillslope evolution models. In the Sila massif we carried out cosmogenic isotopes analysis on 24 samples of modern fluvial sediments to constrain long-term (~103 yr) erosion rate averaged on the catchment area. 35 longitudinal rivers profiles have been analyzed to study the tectonic signal on the landscape evolution. The rivers analyzed exhibit a wide variety of profile forms, diverging from equilibrium state form. Generally the river profiles show at least 2 and often 3 distinct concave-up knickpoint-bounded segments, characterized by different value of concavity and steepness indices. River profiles suggest three main stages of incision. The values of ks and θ in the lower segments evidence a decrease in river incision, due probably to increasing uplift rate. The cosmogenic erosion rates pointed out that old landscape upland is eroding slowly at ~0.1 mm/yr. In the contrary, the flanks of the massif is eroding faster with value from 0.4 to 0.5 mm/yr due to river incision and hillslope processes. Cosmogenic erosion rates mach linearly with steepness indices and with average hillslope gradient. In the Messina area the long term erosion rate from low-T thermochronometry are of the same order than millennium scale cosmogenic erosion rate (1-2 mm/yr). In this part of the chain the fast erosion is active since several million years, probably controlled by extensional tectonic regime. In the Peloritani Mts apatite fission-track and (U-Th)/He thermochronometry are applied to constraint the thermal history of the basement rock. Apatite fission-track ages range between 29.0±5.5 and 5.5±0.9 Ma while apatite (U-Th)/He ages vary from 19.4 to 1.0 Ma. Most of the AFT ages are younger than the overlying terrigenous sequence that in turn postdates the main orogenic phase. Through the coupling of the thermal modelling with the stratigraphic record, a Middle Miocene thermal event due to tectonic burial is unravel. This event affected a inner-intermediate portion of the Peloritani belt confined by young AFT data (<15 Ma) distribution. We interpret this thermal event as due to an out-of–sequence thrusting occurring in the inner portion of the belt. Young (U-Th)/He ages (c. 5 Ma) record a final exhumation stage with increasing rates of denudation since the Pliocene times due to postorogenic extensional tectonics and regional uplift. In the final chapter we change the spatial scale to insert digital topography analysis and field data within a geodynamic model that can explain surface evidence produced by subduction process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In den letzten drei Jahrzehnten sind Fernerkundung und GIS in den Geowissenschaften zunehmend wichtiger geworden, um die konventionellen Methoden von Datensammlung und zur Herstellung von Landkarten zu verbessern. Die vorliegende Arbeit befasst sich mit der Anwendung von Fernerkundung und geographischen Informationssystemen (GIS) für geomorphologische Untersuchungen. Durch die Kombination beider Techniken ist es vor allem möglich geworden, geomorphologische Formen im Überblick und dennoch detailliert zu erfassen. Als Grundlagen werden in dieser Arbeit topographische und geologische Karten, Satellitenbilder und Klimadaten benutzt. Die Arbeit besteht aus 6 Kapiteln. Das erste Kapitel gibt einen allgemeinen Überblick über den Untersuchungsraum. Dieser umfasst folgende morphologische Einheiten, klimatischen Verhältnisse, insbesondere die Ariditätsindizes der Küsten- und Gebirgslandschaft sowie das Siedlungsmuster beschrieben. Kapitel 2 befasst sich mit der regionalen Geologie und Stratigraphie des Untersuchungsraumes. Es wird versucht, die Hauptformationen mit Hilfe von ETM-Satellitenbildern zu identifizieren. Angewandt werden hierzu folgende Methoden: Colour Band Composite, Image Rationing und die sog. überwachte Klassifikation. Kapitel 3 enthält eine Beschreibung der strukturell bedingten Oberflächenformen, um die Wechselwirkung zwischen Tektonik und geomorphologischen Prozessen aufzuklären. Es geht es um die vielfältigen Methoden, zum Beispiel das sog. Image Processing, um die im Gebirgskörper vorhandenen Lineamente einwandfrei zu deuten. Spezielle Filtermethoden werden angewandt, um die wichtigsten Lineamente zu kartieren. Kapitel 4 stellt den Versuch dar, mit Hilfe von aufbereiteten SRTM-Satellitenbildern eine automatisierte Erfassung des Gewässernetzes. Es wird ausführlich diskutiert, inwieweit bei diesen Arbeitsschritten die Qualität kleinmaßstäbiger SRTM-Satellitenbilder mit großmaßstäbigen topographischen Karten vergleichbar ist. Weiterhin werden hydrologische Parameter über eine qualitative und quantitative Analyse des Abflussregimes einzelner Wadis erfasst. Der Ursprung von Entwässerungssystemen wird auf der Basis geomorphologischer und geologischer Befunde interpretiert. Kapitel 5 befasst sich mit der Abschätzung der Gefahr episodischer Wadifluten. Die Wahrscheinlichkeit ihres jährlichen Auftretens bzw. des Auftretens starker Fluten im Abstand mehrerer Jahre wird in einer historischen Betrachtung bis 1921 zurückverfolgt. Die Bedeutung von Regentiefs, die sich über dem Roten Meer entwickeln, und die für eine Abflussbildung in Frage kommen, wird mit Hilfe der IDW-Methode (Inverse Distance Weighted) untersucht. Betrachtet werden außerdem weitere, regenbringende Wetterlagen mit Hilfe von Meteosat Infrarotbildern. Genauer betrachtet wird die Periode 1990-1997, in der kräftige, Wadifluten auslösende Regenfälle auftraten. Flutereignisse und Fluthöhe werden anhand von hydrographischen Daten (Pegelmessungen) ermittelt. Auch die Landnutzung und Siedlungsstruktur im Einzugsgebiet eines Wadis wird berücksichtigt. In Kapitel 6 geht es um die unterschiedlichen Küstenformen auf der Westseite des Roten Meeres zum Beispiel die Erosionsformen, Aufbauformen, untergetauchte Formen. Im abschließenden Teil geht es um die Stratigraphie und zeitliche Zuordnung von submarinen Terrassen auf Korallenriffen sowie den Vergleich mit anderen solcher Terrassen an der ägyptischen Rotmeerküste westlich und östlich der Sinai-Halbinsel.