995 resultados para Kinetic modelling
Resumo:
ArtinM is a D-mannose binding lectin that has been arousing increasing interest because of its biomedical properties, especially those involving the stimulation of Th1 immune response, which confers protection against intracellular pathogens The potential pharmaceutical applications of ArtinM have motivated the production of its recombinant form (rArtinM) so that it is important to compare the sugar-binding properties of jArtinM and rArtinM in order to take better advantage of the potential applications of the recombinant lectin. In this work, a biosensor framework based on a Quartz Crystal Microbalance was established with the purpose of making a comparative study of the activity of native and recombinant ArtinM protein The QCM transducer was strategically functionalized to use a simple model of protein binding kinetics. This approach allowed for the determination of the binding/dissociation kinetics rate and affinity equilibrium constant of both forms of ArtinM with horseradish peroxidase glycoprotein (HRP), a N-glycosylated protein that contains the trimannoside Man alpha 1-3[Man alpha 1-6]Man, which is a known ligand for jArtinM (Jeyaprakash et al, 2004). Monitoring of the real-time binding of rArtinM shows that it was able to bind HRP, leading to an analytical curve similar to that of jArtinM, with statistically equivalent kinetic rates and affinity equilibrium constants for both forms of ArtinM The lower reactivity of rArtinM with HRP than jArtinM was considered to be due to a difference in the number of Carbohydrate Recognition Domains (CRDs) per molecule of each lectin form rather than to a difference in the energy of binding per CRD of each lectin form. (C) 2010 Elsevier B V. All rights reserved
Resumo:
Computational models complement laboratory experimentation for efficient identification of MHC-binding peptides and T-cell epitopes. Methods for prediction of MHC-binding peptides include binding motifs, quantitative matrices, artificial neural networks, hidden Markov models, and molecular modelling. Models derived by these methods have been successfully used for prediction of T-cell epitopes in cancer, autoimmunity, infectious disease, and allergy. For maximum benefit, the use of computer models must be treated as experiments analogous to standard laboratory procedures and performed according to strict standards. This requires careful selection of data for model building, and adequate testing and validation. A range of web-based databases and MHC-binding prediction programs are available. Although some available prediction programs for particular MHC alleles have reasonable accuracy, there is no guarantee that all models produce good quality predictions. In this article, we present and discuss a framework for modelling, testing, and applications of computational methods used in predictions of T-cell epitopes. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
We consider a kinetic Ising model which represents a generic agent-based model for various types of socio-economic systems. We study the case of a finite (and not necessarily large) number of agents N as well as the asymptotic case when the number of agents tends to infinity. The main ingredient are individual decision thresholds which are either fixed over time (corresponding to quenched disorder in the Ising model, leading to nonlinear deterministic dynamics which are generically non-ergodic) or which may change randomly over time (corresponding to annealed disorder, leading to ergodic dynamics). We address the question how increasing the strength of annealed disorder relative to quenched disorder drives the system from non-ergodic behavior to ergodicity. Mathematically rigorous analysis provides an explicit and detailed picture for arbitrary realizations of the quenched initial thresholds, revealing an intriguing ""jumpy"" transition from non-ergodicity with many absorbing sets to ergodicity. For large N we find a critical strength of annealed randomness, above which the system becomes asymptotically ergodic. Our theoretical results suggests how to drive a system from an undesired socio-economic equilibrium (e. g. high level of corruption) to a desirable one (low level of corruption).
Resumo:
The solidification of intruded magma in porous rocks can result in the following two consequences: (1) the heat release due to the solidification of the interface between the rock and intruded magma and (2) the mass release of the volatile fluids in the region where the intruded magma is solidified into the rock. Traditionally, the intruded magma solidification problem is treated as a moving interface (i.e. the solidification interface between the rock and intruded magma) problem to consider these consequences in conventional numerical methods. This paper presents an alternative new approach to simulate thermal and chemical consequences/effects of magma intrusion in geological systems, which are composed of porous rocks. In the proposed new approach and algorithm, the original magma solidification problem with a moving boundary between the rock and intruded magma is transformed into a new problem without the moving boundary but with the proposed mass source and physically equivalent heat source. The major advantage in using the proposed equivalent algorithm is that a fixed mesh of finite elements with a variable integration time-step can be employed to simulate the consequences and effects of the intruded magma solidification using the conventional finite element method. The correctness and usefulness of the proposed equivalent algorithm have been demonstrated by a benchmark magma solidification problem. Copyright (c) 2005 John Wiley & Sons, Ltd.
Resumo:
Carbon monoxide, the chief killer in fires, and other species are modelled for a series of enclosure fires. The conditions emulate building fires where CO is formed in the rich, turbulent, nonpremixed flame and is transported frozen to lean mixtures by the ceiling jet which is cooled by radiation and dilution. Conditional moment closure modelling is used and computational domain minimisation criteria are developed which reduce the computational cost of this method. The predictions give good agreement for CO and other species in the lean, quenched-gas stream, holding promise that this method may provide a practical means of modelling real, three-dimensional fire situations. (c) 2005 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
Resumo:
Pollution by polycyclic aromatic hydrocarbons(PAHs) is widespread due to unsuitable disposal of industrial waste. They are mostly defined as priority pollutants by environmental protection authorities worldwide. Phenanthrene, a typical PAH, was selected as the target in this paper. The PAH-degrading mixed culture, named ZM, was collected from a petroleum contaminated river bed. This culture was injected into phenanthrene solutions at different concentrations to quantify the biodegradation process. Results show near-complete removal of phenanthrene in three days of biodegradation if the initial phenanthrene concentration is low. When the initial concentration is high, the removal rate is increased but 20%-40% of the phenanthrene remains at the end of the experiment. The biomass shows a peak on the third day due to the combined effects of microbial growth and decay. Another peak is evident for cases with a high initial concentration, possibly due to production of an intermediate metabolite. The pH generally decreased during biodegradation because of the production of organic acid. Two phenomenological models were designed to simulate the phenanthrene biodegradation and biomass growth. A relatively simple model that does not consider the intermediate metabolite and its inhibition of phenanthrene biodegradation cannot fit the observed data. A modified Monod model that considered an intermediate metabolite (organic acid) and its inhibiting reversal effect reasonably depicts the experimental results.
Resumo:
Light is generally regarded as the most likely cue used by zooplankton to regulate their vertical movements through the water column. However, the way in which light is used by zooplankton as a cue is not well understood. In this paper we present a mathematical model of diel vertical migration which produces vertical distributions of zooplankton that vary in space and time. The model is used to predict the patterns of vertical distribution which result when animals are assumed to adopt one of three commonly proposed mechanisms for vertical swimming. First, we assume zooplankton tend to swim towards a preferred intensity of light. We then assume zooplankton swim in response to either the rate of change in light intensity or the relative rate of change in light intensity. The model predicts that for all three mechanisms movement is fastest at sunset and sunrise and populations are primarily influenced by eddy diffusion at night in the absence of a light stimulus. Daytime patterns of vertical distribution differ between the three mechanisms and the reasons for the predicted differences are discussed. Swimming responses to properties of the light field are shown to be adequate for describing diel vertical migration where animals congregate in near surface waters during the evening and reside at deeper depths during the day. However, the model is unable to explain how some populations halt their ascent before reaching surface waters or how populations re-congregate in surface waters a few hours before sunrise, a phenomenon which is sometimes observed in the held. The model results indicate that other exogenous or endogenous factors besides light may play important roles in regulating vertical movement.
Resumo:
Purlin-sheeting systems used for roofs and walls commonly take the form of cold-formed channel or zed section purlins, screw-connected to corrugated sheeting. These purlin-sheeting systems have been the subject of numerous theoretical and experimental investigations over the past three decades, but the complexity of the systems has led to great difficulty in developing a sound and general model. This paper presents a non-linear elasto-plastic finite element model, capable of predicting the behaviour of purlin-sheeting systems without the need for either experimental input or over simplifying assumptions. The model incorporates both the sheeting and the purlin, and is able to account for cross-sectional distortion of the purlin, the flexural and membrane restraining effects of the sheeting, and failure of the purlin by local buckling or yielding. The validity of the model is shown by its good correlation with experimental results. A simplified version of this model, which is more suitable for use in a design environment, is presented in a companion paper. (C) 1997 Elsevier Science Ltd.
Resumo:
A number of theoretical and experimental investigations have been made into the nature of purlin-sheeting systems over the past 30 years. These systems commonly consist of cold-formed zed or channel section purlins, connected to corrugated sheeting. They have proven difficult to model due to the complexity of both the purlin deformation and the restraint provided to the purlin by the sheeting. Part 1 of this paper presented a non-linear elasto plastic finite element model which, by incorporating both the purlin and the sheeting in the analysis, allowed the interaction between the two components of the system to be modelled. This paper presents a simplified version of the first model which has considerably decreased requirements in terms of computer memory, running time and data preparation. The Simplified Model includes only the purlin but allows for the sheeting's shear and rotational restraints by modelling these effects as springs located at the purlin-sheeting connections. Two accompanying programs determine the stiffness of these springs numerically. As in the Full Model, the Simplified Model is able to account for the cross-sectional distortion of the purlin, the shear and rotational restraining effects of the sheeting, and failure of the purlin by local buckling or yielding. The model requires no experimental or empirical input and its validity is shown by its goon con elation with experimental results. (C) 1997 Elsevier Science Ltd.
Resumo:
Field studies have shown that the elevation of the beach groundwater table varies with the tide and such variations affect significantly beach erosion or accretion. In this paper, we present a BEM (Boundary Element Method) model for simulating the tidal fluctuation of the beach groundwater table. The model solves the two-dimensional flow equation subject to free and moving boundary conditions, including the seepage dynamics at the beach face. The simulated seepage faces were found to agree with the predictions of a simple model (Turner, 1993). The advantage of the present model is, however, that it can be used with little modification to simulate more complicated cases, e.g., surface recharge from rainfall and drainage in the aquifer may be included (the latter is related to beach dewatering technique). The model also simulated well the field data of Nielsen (1990). In particular, the model replicated three distinct features of local water table fluctuations: steep rising phase versus flat falling phase, amplitude attenuation and phase lagging.
Resumo:
Izenman and Sommer (1988) used a non-parametric Kernel density estimation technique to fit a seven-component model to the paper thickness of the 1872 Hidalgo stamp issue of Mexico. They observed an apparent conflict when fitting a normal mixture model with three components with unequal variances. This conflict is examined further by investigating the most appropriate number of components when fitting a normal mixture of components with equal variances.
Resumo:
In order to analyse the effect of modelling assumptions in a formal, rigorous way, a syntax of modelling assumptions has been defined. The syntax of modelling assumptions enables us to represent modelling assumptions as transformations acting on the set of model equations. The notion of syntactical correctness and semantical consistency of sets of modelling assumptions is defined and methods for checking them are described. It is shown on a simple example how different modelling assumptions act on the model equations and their effect on the differential index of the resulted model is also indicated.
Resumo:
The successful elimination of vectorial and transfusional transmission of Chagas` disease from some countries is a result of the reduction of domestic density of the primary vector Triatoma infestans, of almost 100% of coverage in blood serological selection and to the fact that the basic reproductive number of Chagas` disease is very close to one (1.25). Therefore, congenital transmission is currently the only way of acquiring Chagas` Disease in such regions. In this paper we propose a model of congenital transmission of Chagas` disease. Its aim is to provide an estimation of the time period it will take to eliminate this form of transmission in regions where vetorial transmission was reduced to close to zero, like in Brazil. (C) 2009 Elsevier Ireland Ltd. All rights reserved.